
www.manaraa.com

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6” x 9" black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Learning
300 North Zeeb Road. Ann Arbor, Ml 48106-1346 USA

800-521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.comReproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Charting the Rocky Shoals of an Object-Oriented Mindshift

By

Deborah J. Armstrong

B.A., California State University, 1986
M.B.A., Avila College, 1996

Submitted to the School of Business and the Faculty of the
Graduate School o f the University of Kansas in partial fulfillment

of the requirements for the degree of Doctor of Philosophy

Dissertation Co-Chairs:

Dr. v i ^ naKtyanan
Drexei UniverS

y M. Nelson
rsity of Utah

Dr. Raj Srivastiva
University of Kansas

Committee Members:

r. Howard Sypner
University of Kansas

>r.v. flames Nelson
UniverstTV'of Utah

Dr. Carson Wc
University o f ,
British Columbia

Date Defended

m 1 0 2001
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

UMI Number: 3055103

Copyright 2001 by
Armstrong, Deborah J.

Ail rights reserved.

_®

UMI
UMI Microform 3055103

Copyright 2002 by ProQuest Information and Learning Company.
All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Copyright 2001

Deborah J. Armstrong

i

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

ABSTRACT

This research explored the mindshift currently taking place from procedural

software development techniques to object-oriented (OO) techniques. The

overarching goal of this research was to answer the questions, “Why is it difficult

for procedural experts to leam object-oriented development? And Where in the

learning process are developers experiencing difficulty?” Drawing on the schema

and skill acquisition theories from the cognitive psychology literature this study

uses the concept of proactive interference to address the research questions.

Proactive interference occurs when knowledge cannot be integrated with an

activated mental model or schema. When proactive interference occurs the

previously learned information interferes with the learning of the new information.

The result is a more difficult learning process than if there was no previous

knowledge. The study was conducted in three phases. In Phase One revealed

causal mapping was used to capture the procedural and object-oriented

development domain expertise. In Phase Two, the two aggregated maps were

quantified into an instrument. In Phase Three the validated instrument

administered to a sample of developers with various levels of expertise in both

mindsets. Results indicated that the learning curve for procedural software

development experts learning object-oriented techniques included learning

plateaus. Also, proactive interference was positively associated with those learning

plateaus. And, lastly, the plateaus occurred at certain levels of object-oriented

experience and clustered around certain object-oriented concepts. Our findings

ii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

indicate that software developers experience difficulty at several points in the

learning process. Proactive interference is the strongest during the processes of

understanding object-oriented development within a larger system. An

understanding of the learning processes involved in transition from procedural to

object-oriented techniques could shorten the learning process, increase software

quality, perhaps decrease the frustration level of students during their learning

process, and ultimately increase the use of object-oriented techniques. From a

theoretical perspective, questions of knowledge transfer and proactive interference

are important to our understanding of learning and should continue to be explored.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

DEDICATION

There are so many people to thank and so few lines to do it in when you

have to double space! Please understand that the acknowledgements may be

parsimonious, but the feelings behind them are heartfelt. I would like to thank Kay

Nelson, who not only is a fantastic advisor, but also my friend. Thank you for

rescuing me from OBlivion and showing me the way. To Jim Nelson, thank you

for your genius and calming effect on so many occasions. You Nelsons are some

of the most generous (and talented) people I know and I thank God that you were

willing to take me on. To V. K. Narayanan, thank you for your knowledge (both

causal and evoked), patience, flexibility and most of all your sense of humor during

this process. To Raj Srivasitiva, thank you for being just what I needed right when

I really needed it. To Carson Woo, thank you for putting up with all the chaos. To

Howard Sypher, thank you for giving your time to a not-so-perfect stranger. To

Medhi Ghods, thank you for lending me your expertise, enthusiasm and support.

To Chris Klomp, thank you for everything I learned from you while interacting

with your organization and for your tremendous support during data collection. To

Steve Hillmer, thank you for your statistical expertise, and always making time for

a chat. To Jim Heintz and Greg Freix, thank you for believing in me and

supporting my research. To Bill Hardgrave, Woo-Pig-Suey! (need I say more?).

To Mari Buche and Benedict Kemmerer, thank you for your assistance both

professional and personal. To Kristy Vetter, the best friend anyone could ask for,

thank you (for too many reasons to list). To my friend and colleague Bonnie

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

O’Neill, my long distance lifeline, thank you for being there whenever I needed a

sympathetic ear. To my family, thank you for the love, encouragement and help in

the trenches during this process. Lastly, I would like to dedicate this dissertation

to my hero, my husband, Ken Armstrong. As Shania says, “My dreams came true

because of you.”

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

TABLE OF CONTENTS

Chapter One.. 1
Introduction.. 1

Document Overview... 4

Chapter Two... 6
A Model Of Learning Software Development..6

The Psychology of Learning... 6
The Role of Schemas in the Learning Process.................................... 11
Proactive Interference...12
Learning Curves: The Graphical Aspect of Proactive Interference 15
Software Education Foundations.. 16

Expert/Novice Differences... 16
Transfer of Problem Solving Skills......................................18

Summary of the Software Development Learning M odel..............22

Chapter Three... 24
Research Design And Method... 24

Evocative Research.. 24
Longitudinal Approximation..26
Research Design... 26

Phase One: Knowledge Elicitation....................................... 27
Revealed Causal Mapping....................................... 29
Qualitative Identification: Step 1.............................30
Sampling Method..30
Sample.. 31
Interview Method..32
Point of Redundancy... 32
Qualitative Identification: Step 233
Qualitative Identification: Step 336
Qualitative Identification: Step 437
Qualitative Identification: Step 538

Phase Two: Instrument Development.................................38
Pretest Sort...41
Pilot Instrument..42
Pilot Study Data Analysis.. 44

Phase Three: Quantitative Verification...............................47
Sample..47
Data Collection...48

Summary of Chapter Three..50

VI

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Chapter Four..52
Data Analysis and Results.. 52

Cluster Analysis... 52
Sample Selection..53
Variable Definition...54
Similarity Measures..57
Clustering Method..58

Hypotheses...66
Hypothesis 1 ... 66
Hypothesis2 ..70
Hypothesis 3 ... 72
Hypothesis 4 ... 74
Don’t Know Analysis...76

Summary of Chapter Four.. 77

Chapter Five...79
Discussion...79

Research Findings.. 80
Classification Scheme..80
Cluster Analysis...82
Hypotheses... 84

Implications.. 91
Limitations... 96
Future Research... 99
Summary of Chapter F ive... 100

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

LIST OF FIGURES

Figure I . The Osgood Transfer Surface..102

Figure 2. Hypothetical Learning Curves...103

Figure 3. Hypothetical Learning Curve - Complex Processes........................104

Figure 4. Hypothetical Learning Curve With Plateaus................................... 105

Figure 5. Point Of Redundancy For Procedural And
Object-Oriented RCMs... 106

Figure 6. K-Means Cluster Analysis Centers...107

Figure 7. Correlation Graph, Years versus Number of Projects....................108

Figure 8. Basic Level Construct... 109

Figure 9. Object Level Construct... 110

Figure 10. System Level Construct.. I l l

Figure 11. Comparison Of Class Concept Versus Subroutine Concept
Using Years Of OO Experience And Number Of OO
Projects As The X-Axis.. 112

Figure 12. Comparison Of Data Model And Object Model Concepts
Using Years Of OO Experience And Number Of OO
Projects As The X-Axis...113

Figure 13. Comparison Of Procedural And Object-Oriented
Interaction Concepts Using Years Of OO Experience
And Number Of OO Projects As The X-Axis...............................114

Figure 14. Comparison Of Layer And Monolithic Concepts
Using Years Of OO Experience And Number
Of OO Projects As The X-Axis... 115

Figure 15. Comparison Of Functional Decomposition And
Noun-Verb Analysis Concepts Using Years Of
OO Experience And Number Of OO Projects
As The X-Axis... 116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Figure 16. Comparison Of Function And Things As Objects
Concepts Using Years Of OO Experience And
Number Of OO Projects As The X-Axis......................................117

Figure 17 A. Comparison Of Function And Things As Objects
Concepts Using Years Of OO Experience
And Number Of OO Projects As The X-Axis................................118

Figure 17B. Comparison Of Function And Converting
Things Into Objects Concepts Using Years Of
OO Experience As The X-Axis.. 119

Figure 18. Comparison Of Abstraction And Data
Modification Concepts Using Number Of OO
Projects As The X-Axis.. 120

Figure 19. Comparison Of Interaction And
Input-Process-Output Concepts Using Numbe.
Of OO Projects As The X-Axis.. 121

Figure 20. Comparison Of Data Model And Object Model
Concepts Using Number Of OO Projects
As The X-Axis..122

Figure 21. Multiple Plateau Location - Converting Things.............................123

Figure 22. Multiple Plateau Location - Abstraction..124

Figure 23. Multiple Plateau Location - Message Passing............................... 125

Figure 24. Basic Level Construct For “Don’t Know” Analysis...................... 126

Figure 25. Object Level Construct For “Don’t Know” Analysis.................... 127

Figure 26. System Level Construct For “Don’t Know” Analysis................... 128

Figure 27. Comparison Of Basic Level Construct Plateaus.............................129

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

LIST OF TABLES

Table 1. Approaches to Skill Acquisition... 130

Table 2. Phase I Demographics..133

Table 3. Causal Statements.. 134

Table 4. Evoked Statements.. 135

Table 5. Expert Classification Scheme (Phase I) ... 136

Table 6. Phase II Demographics... 138

Table 7. Phase III Demographics.. 139

Table 8. Learning Conceptual Scheme.. 143

Table 9. K-Means Cluster Analysis.. 144

Table 10. t-tests Comparing Clusters.. 145

Table 11. Cluster ANOV A ...146

Table 12. Coefficient of Determination.. 147

Table 13. Standard Error.. 148

Table 14. Comparison of Response Choices... 149

Table 15. Plateaus Using Years of OO Experience.. 150

Table 16. Plateaus Using Number of OO Projects.. 151

Table 17. Percentage of “Don’t Know” Responses.. 152

Table 18. Summary of Findings...153

Table 19. Construct/Concept Plateaus...155

x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

LIST OF APPENDICES

Appendix A Interview Guide.. 174

Appendix B Glossary of Software Development Terms.................................... 175

Appendix C Scale Reliabilities.. 193

Appendix D Form Loading Screen.. 199

Appendix E Survey Screen..200

Appendix F Thank You Screen..202

Appendix G Hierarchical Cluster Analysis Dendrogram...................................203

Appendix H Agglomeration Schedule..207

xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER ONE

Introduction

You must unlearn what you have learned.

—Yoda, The Empire Strikes Back, 1980

We have all come to accept that the world is changing at an ever-increasing

rate. In many instances these changes are not incremental but quantum shifts in

methods, technologies and mindsets. A mindset is a distinctive viewpoint that

determines how an individual engages events or views reality (Culbert, 1996); a

mental attitude or disposition that predetermines a person's responses to and

interpretations of situations (Leonard, 1995). A change in mindset is a change in

the thoughts, perceptions and values that form a particular view of reality. When

fundamental changes are made to essential or commonly held concepts a revolution

occurs. These changes constitute a radical breakaway from the governing mindset

(Mey, 1982). For this research a mindshift is defined as a revolutionary change in

mindset or in the way things are thought about.

We see examples of these revolutionary changes or mindshifts all around us.

The introduction of the Internet has caused a multitude of changes. In education,

the traditional classroom is being replaced by distributed learning environments. In

the business world the traditional model of business is being replaced by the “e”

model. The field of Information Systems (IS) is especially sensitive to these

revolutions or mindshifts. Examples within IS include the move from hierarchical

l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

to relational databases, the shift from mainframe computing to client/server, and the

shift from procedural to object-oriented software development techniques.

This research explored the mindshift currently taking place from procedural

software development techniques to object-oriented (OO) techniques (Pei &

Cutone, 1995; Vessey & Conger, 1994). The term "development" is used to

represent the entire systems development life cycle, including analysis, design,

programming and maintenance. To address these roles, this study included

individuals engaged in a variety of functions within the software development

domain, such as: analysts, architects, designers, engineers, developers,

programmers and project managers.

While OO techniques hold the promise of shorter development times and

easier maintenance, there is a severe shortage of software developers available who

can put these techniques into practice (Cassidy, 1997; Eaton & Gatian, 1996; Page-

Jones, 1994). There are two likely solutions to this problem, but each of these

solutions has its advantages and disadvantages. One solution is to hire object-

oriented experts. When they can be found, experts in OO techniques look like the

perfect solution. However, successful OO modeling requires business specific

domain knowledge (Rosson & Gold, 1989). Understanding the business problem is

critical for using object-oriented techniques as problem analysis revolves around

modeling “real world” objects. Since external experts do not possess the necessary

domain knowledge, hiring OO development experts is not the optimal solution.

Conversely, organizations can retrain their procedural development experts in

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

object-oriented methods. The internal developers possess the business specific

domain knowledge necessary for successful OO modeling and development.

Software development education researchers have investigated various

aspects of transitioning from one development language or mindset to another such

as: skill obsolescence (e.g. Fossum, Arvey, Paradise, and Robins, 1986; Gist,

Rosen, and Schwoerer, 1988), the benefits of the object-oriented approach (e.g.

Guttman & Matthews, 1992), trainee motivation (e.g. Baldwin et al., 1991; Ryan,

1999), and expert versus novice developers (e.g. Liu, Goetze, & Glynn, 1992). A

few studies have looked at procedural experts learning object-oriented languages

(e.g. Detienne, 1990; Manns & Nelson, 1996). A common assertion found in many

of the studies is that it is difficult for an experienced software developer to make

the transition to a new language and/or mindset. To date though, few have

addressed why is it difficult to make the transition, and where individuals are

experiencing difficulties in the learning process.

To address the difficulties inherent in retraining existing staff, this research

sought to understand the difficulties procedural software development experts

encounter as they shift to the object-oriented mindset. By identifying the cognitive

processes involved in shifting mindsets, we are better able to leam where

individuals are experiencing difficulties in the transition. This study addresses

those issues and extends the work o f Nelson, Irwin, & Monarchi (1997) by

focusing on the process and the problems that individuals encounter as they move

through the learning process. The overarching goal of this research program is to

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

answer the question, “How can organizations ease the difficulties involved in

revolutionary mindshifts?” To accomplish this goal, this study sought to answer

the questions, "Why is it difficult for procedural experts to leam object-oriented

development?” and “Where in the learning process are developers experiencing

difficulty?”

The issues of skill acquisition, transfer and interference in the learning

process that were investigated in this study add to our understanding of expert

knowledge, software development and cognition. This has implications for both

theory and practice. From a theoretical perspective the cognitive models of

procedural and object-oriented expertise contribute to our understanding of expert

knowledge and cognition. Increasing our understanding of the difficulties that

developers are experiencing during a mindshift may help ease the learning process.

The practical implication of such theory development and testing offers insight for

more effective and more efficient retraining.

Document Overview

Chapter Two of this document discusses the theoretical foundations of IS

learning. The learning literature from the fields of Psychology, Educational

Psychology and Information Systems are brought together to develop the

hypotheses for this dissertation.

Chapter Three discusses the methods used in studying the learning process

and the research design for the dissertation.

Chapter Four of this document discusses the results of this research. The

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

results of the analyses performed are reviewed.

Chapter Five begins by discussing the research findings in greater detail.

The implications and limitations of the research are then presented. This document

concludes with directions for future research suggested by this study.

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER TWO

A Model Of Learning Software Development

This chapter develops a model of learning to develop software when previous

software development expertise is present. In developing this model we sought to:

Explore and understand the learning process, and

Articulate the theoretical underpinnings of the software

development learning model.

“Computer programming is a complex cognitive task composed of a variety of

subtasks and involving several kinds of specialized knowledge” (Pennington, 1987,

p. 295). A cognitive process occurs when an individual is involved in any type of

information processing, thinking, or learning (Billett, 1994). When an individual

develops software he or she solves a problem and engages in a cognitive process.

Since learning to develop software is cognitive learning, theories from the

cognitive learning literature provide useful tools for identifying and explaining the

processes involved in these mindshifts. By tracing the cognitive learning research

from its origins we can provide a historical context for this study and demonstrate

where cognitive skill learning fits within the learning domain.

The Psychology of Learning

Research in learning originated from the behaviorist tradition popularized by

John Watson (1878-1958). Almost all learning theorists of the first half of the

twentieth century accepted the behaviorist or associationistic framework. The

associationist studies overt behavior in a systematic and objective way. They

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

believe that mental life can be explained in terms of two basic components: ideas

and associations (or links) between them (Mayer, 1983). The associationist view

assumes that for any stimuli (S) there are associations or links to many possible

responses (Rl, R2...). The links are assumed to be in the problem solver’s head,

where they form a family of possible responses associated with a given situation.

The responses may vary in strength, with some associations being very strong and

others very weak. The responses for any situation may be put into a hierarchy in

order of their strength.

In contrast to the associationist view, the cognitive perspective states that

behavior is the manifestation of cognition (thinking) and therefore psychological

definitions must be tied to the mechanisms that underlie behavior (Mayer, 1983).

Cognitive processes can be defined as cognitive activities performed by an

individual when engaged in any type of thinking, or learning (Billett, 1994).

Hilgard and Bower (1970) summarize the principles emphasized within cognitive

theory as:

1. The perceptual features according to which the problem is displayed to

the learner are important conditions of learning.

2. The organization of knowledge is essential.

3. Learning with understanding is more permanent and transferable than

rote learning.

4. Cognitive feedback confirms correct knowledge and corrects faulty

learning.

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

5. Goal setting by the learner is important as motivation for learning.

6. Divergent thinking (which leads to inventive solutions) is to be nurtured

along with convergent thinking.

The cognitive learning theories we know today evolved from these cognitive

foundations. Information processing theory is a more recent learning theory based

on the cognitive model. According to information processing theory humans are

information processors comparable to a computer (Newell & Simon, 1958, 1972).

Like a computer, information flows through stages of cognitive processing and

storage to provide an output. Three assumptions of the theory are: (1) a control

system is comprised of memories, containing information and connected by

relationships; (2) information processes operate on the information that is stored in

memory; and (3) rules are formulated that combine processes into complete

programs (Sahakian, 1970).

Cognitive skills code and interpret incoming sensory information and that

information is translated into a skilled response (Colley & Beech, 1989).

Individuals use cognitive processes such as learning, thinking and problem solving

when engaged in cognitive skills (Billett, 1994). Software developers take

incoming information in the form of user requirements, engage in cognitive

processes such as problem solving, and translate the information into a solution.

When an individual learns to develop software he or she is learning a cognitive

skill (Colley & Beech, 1989). Since learning to develop software is cognitive

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

learning, theories from cognitive psychology are appropriate foundations for

identifying and explaining the processes involved in these mindshifts.

The information-processing model is a theory from the field of cognitive

psychology that provides a method for examining the processes underlying the

learning of software development from a cognitive perspective. For this study we

used the information processing theory and defined learning from a cognitive

perspective as an inferred change in the individual's mental state (Tarpy & Mayer,

1978, p. 3). This change results from experience, and influences in a relatively

permanent fashion the individual's potential for subsequent adaptive behavior

(Tarpy & Mayer, 1978, p. 3).

Within the information-processing model there are several theories of

learning or skill acquisition. Table 1 lists these theories, which can be categorized

into three groups: productions systems, mental models and propositional based

theories (Villeneuve & Fedorowicz, 1997). The production systems theories

typically apply if/then rules to incoming data to determine actions to be taken. The

mental model theory asserts that an individual creates a model of a situation before

taking action. The propositional based theories posit that incoming knowledge is

compared against stored knowledge. The result of this comparison is a new

instance of the memory or a refinement of the old memory. Propositional-based

theories are often used in research on human expertise. Schema theories are more

appropriate than many of the other propositional theories for the stud> of expertise

because they provide mechanisms for learning that others do not (Villeneuve &

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Fedorowicz, 1997). The schema theories tend to provide problem-solving context-

dependent explanations for human cognitive processes. The current research uses

the schema skill acquisition theory originally proposed by Bartlett (1932) because

of its emphasis on learning, expertise and the recognition of the importance of

context.

Learning a new cognitive skill such as software development has three stages

consisting of the accumulation of declarative knowledge, knowledge compilation

and the development of procedural knowledge (Anderson, 1982). Declarative

knowledge consists of facts, assertions, and concepts. It is accessible and can

generally be described. The knowledge compilation stage consists o f the transition

from the declarative knowledge to the procedural knowledge (Anderson, 1982).

Procedural knowledge consists of techniques, skills and the ability to secure goals

and is not readily accessible or easily described (Conway & Wilson, 1988).

During the first stage, the learner memorizes general knowledge and rules about

the skill and domain. Novices then use general-purpose problem solving techniques

with this declarative knowledge to perform the new skill. As the learner practices the

skill, the knowledge is transformed from declarative to procedural encoding

(knowledge compilation). Initial errors and misconceptions are minimized and the

skill is performed more smoothly and automatically. In this stage the domain

knowledge is directly incorporated in procedures for performing the skill. In the

final stage the learner has transformed the declarative knowledge into procedural

knowledge. The learner continually and gradually improves his or her ability in the

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

skill and relies less on memorized rules. In the procedural stage the skill can be more

automatically and unconsciously performed.

The Role of Schemas in the Learning Process

During any of the three stages of learning the learner may attempt to map

knowledge from familiar domains to the new, unfamiliar domain. The application of

knowledge from one situation to another, or from past experience to new learning

is known as the adaptation of knowledge schemas (Bartlett, 1932). A schema

consists of a set of propositions that are organized by their semantic content

(Bartlett, 1932). There are two basic principles of schema theory: that cognitive

processing is guided and limited by the application of prior knowledge, and that

schemas contain relatively abstract knowledge which is independent of any one

event (Ormerod, 1990). Schemas can be thought of as a data structure representing

generic concepts stored in memory (Detienne, 1990, 1995). Schemas are active

processes that continually evaluate incoming information to discern if it is relevant

(Relmann & Chi, 1989).

Individuals must assimilate the new material into the existing concepts or

schema. What is stored in memory depends on what was presented and the schema

to which it was assimilated. When an unfamiliar event is introduced, the learner

activates the schema that is perceived to most closely match the event. The new

information is compared against existing knowledge and either refines the existing

knowledge or creates a new schema. As an individual's knowledge increases, he or

she develops new or revised mental structures for organizing that knowledge

tl

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

(Kraiger, Ford, and Salas, 1993; Rist, 1989). Thus from a cognitive perspective

learning involves the construction or reconstruction of knowledge structures

(schemas).

Proactive Interference

Because the learning process is dynamic, the student’s previous experience

can impact the learning (Tarpy & Mayer, 1978). When a concept is introduced the

individual activates the schema that is perceived to most closely match the concept.

If the mapping is correct the new information is then integrated with the existing

schema. This process is known as positive transfer or making analogies (Manns &

Nelson, 1996). This transfer of skill aids the knowledge compilation stage and

supports the transformation of declarative knowledge into procedural knowledge

(Singley & Anderson, 1989). When a learner makes an incorrect analogy (negative

transfer) the existing body of knowledge is said to interfere with the assimilation of

new knowledge. The result is a more difficult learning process than if there was no

previous knowledge.

For example, there are two groups, an experimental and a control group. The

experimental group studies for an accounting exam, then studies for a chemistry

exam, and then takes the chemistry exam. The control group performs some

irrelevant activity (e.g. watching TV), then studies for a chemistry exam, and then

takes the chemistry exam. If the experimental group performs better on the

chemistry exam, this is an example of proactive facilitation; prior learning aids the

learning of new material (studying accounting aided learning chemistry). If the

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

experimental and control group perform equally, this is an example of zero transfer.

The previous learning has no effect on the new learning. If the experimental group

performs worse than the control, this is an example of proactive interference; prior

learning interferes with the learning of new material (studying accounting

interfered with learning chemistry). So proactive interference occurs when new

knowledge cannot be integrated with an activated mental model or schema (Manns

& Nelson, 1996; Melton & Irwin, 1940; Underwood, 1957).

Proactive interference has been found to impact error rates when a skill is

learned and then another antagonistic skill is learned. For example, consider a

study of two layouts for numbers on a machine keypad, one similar to an adding

machine (789,456,123,0) and the other like a telephone (123,456, 789, 0) (Conrad

& Hull, 1968). The adding machine layout resulted in more keying errors than the

telephone layout. The telephone layout was part of an existing schema whereas the

adding machine layout was antagonistic to that schema. When the subjects were

learning the machine layout the knowledge of the telephone layout was interfering

with the learning and producing negative transfer.

Another study compared the performance of experienced and inexperienced

pilots under normal and reversed control stick conditions (Hendrick, 1983). Under

the normal condition, experienced pilots committed less than half as many errors as

the inexperienced pilots. Under the reversed control stick condition, both groups

performed much poorer, but the decrease in performance was greater for the

experienced pilot group. The experienced pilots encountered more proactive

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

interference than the novices. In a study of tennis students, negative transfer

occurred when the subject who first learned the forehand stroke was required to

then leam the backhand stroke (Eason, Smith & Plaisance, 1989). In another study,

ethnographic methods were used to study the acquisition of English as a second

language (Schmidt, 1988). The overlearning of the first language created proactive

interference in which the native language interfered with learning English and

caused a distinctive accent. For example German /English was spoken with a

distinct German accent and French/English was spoken with a distinct French

accent. In each of these studies the acquisition of new knowledge was hindered by

the previous knowledge.

Osgood (1949) extended the concept of proactive interference or negative

transfer with the development of the transfer surface. The surface in Figure 1 is

based on two dimensions, the similarity of the stimuli and the similarity of the

responses. Osgood predicted the amount and direction for the various

combinations. For example if the stimuli are identical and the responses are

identical then we should see a correct mapping or positive transfer from one

domain to another. If two systems involve learning different responses to the same

or similar stimuli, interference between the systems will be the greatest when the

systems are close to each other in cognitive space (Bruce, 1933; Gagne & Foster,

1949; Gibson, 1940; Saltz, 1971; Siipola& Israel, 1933). If the stimuli are

identical but the responses are antagonistic then we should see an incorrect

mapping or negative transfer from one domain to another.

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Learning Curves: The Graphical Aspect of Proactive Interference

From a graphical perspective the proactive interference experienced during a

mindshift may impact the learning curve. A learning curve has been defined as a

way of representing the progress of learning (Travers, 1963); a graphical

representation of the learning phenomenon observed in people performing tasks

(Thurstone, 1919); and a graphic depiction of changes in performance (knowledge)

during a specified time period (McCray & Blakemore, 1989). Learning curves

have been used to graphically depict of the effects of proactive interference

(Briggs, 1954). In Briggs’ (1954) study learning curves were used to provide a

graphic description of the frequency of the new response and the old response to

the original stimulus. The results indicated that the amount of original learning

exerted some interference on the new learning.

One of the most important aspects of a learning curve is its form, which

shows the relative influence of experience (McGeoch, 1952) on knowledge. When

the learning function for a simple process proceeds undisturbed by external or

internal distraction the learning curve usually follows one of two shapes, as seen in

Figure 2. The curve may have a positive acceleration (curve A) in which the

incremental gains are slight at the beginning but become progressively larger. The

other curve (curve B) may follow the law of diminishing returns (Thurstone, 1919).

In this case the curve will show negative acceleration by having large incremental

gains at the beginning and smaller gains as time passes. When studying the

learning of complex processes the learning curve generally takes the form of an S-

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

curve. Figure 3 begins with positive acceleration at the initial stage of the learning,

passes through a region where linearity is approached, and then becomes negatively

accelerated (McGeoch, 1952).

When dealing with complex processes, occasionally learning curves show

marked deviation from the form found in Figure 3. One such deviation is the

occurrence of one or more plateaus in the learning curve. A learning plateau has

been defined as a period of little or no change in performance, which is preceded

and followed by periods of improvement (McGeoch, 1952, p. 29). Figure 4

represents this graphically by a horizontal section (learning plateau) in the learning

curve. The first learning plateau was documented in Bryan and Harter’s (1897,

1899) studies of individuals learning telegraphy. They found that operators

learning the telegraphic language experienced periodic stagnation in their learning.

Software Education Foundations

Historically researchers have used two main approaches to study learning

software development: expert-novice differences and the transfer of problem

solving skills (Ormerod, 1990). Because this study was focused on an expert in

one mindset learning a new mindset and is not concerned with novice developers

we based our research on the transfer of problem solving skills approach. A brief

description of the existing literature using each approach will provide a context for

the study.

Expert-Novice Differences

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Within the expert-novice comparison approach, prior research has focused

primarily on differences between developers within the same development mindset

(e.g. procedural). Studies have found that when comprehending a program, experts

tend to form abstract representations containing general knowledge about what a

program does whereas novices form a more concrete representation of how a

program functions (Adelson, 1981, 1984; Kahney, 1983; McKeithen, Reitman,

Rueter, & Hirtle, 1981; Murphy & Wright, 1984; Shneiderman, 1976; Vitalari,

1985; Weiser & Shertz, 1983). As a developer becomes more experienced he or she

develops larger and larger chunks o f information to represent important functional

units or structures. The experienced developers recode the syntactic form in their

minds and deal with the problem at a semantic level. The novices were constrained

to deal with the syntactic inputs and have greater difficulty with the complex details

o f the statements.

There have also been a few studies of experts in one development mindset

being re-trained in another mindset using the expert-novice comparison approach.

Research based on learning theories indicates that prior knowledge of procedural

techniques hinders the transition to object-oriented techniques compared to the

performance of students who have no prior experience with procedural techniques

(Dumas & Parsons, 1995; Nelson et al., 1997; Rosson & Alpert, 1990; Rosson &

Carroll, 1990; Vessey & Conger, 1994;). Procedural experts introduced to object-

oriented concepts will often fall back on their procedure-oriented knowledge

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

(Detienne, 1995; Gibson, 1991; Manns & Nelson, 1996; Pennington, Lee, &

Rehder, 1995).

While providing an important historical context, there are two reasons why

the expert-novice comparison approach is not appropriate for this research. First,

the studies using expert-novice comparison approach have focused on the

differences between the two groups at static points rather than the dynamic process

of learning. They do not investigate the learning process as it develops over time

(Nelson et al., 1997). Second, we are not investigating the training of novice

developers, but are concerned with the issue of retraining existing expert

developers. Therefore, the novice-expert framework is not appropriate for this

research.

Transfer of Problem Solving Skills

The second approach used in software education research has been the

transfer of problem solving skills. Limitations of knowledge organization,

representation and application are major constraints for the problem solver. A way

to overcome these constraints is to acquire expertise. One method of gaining

expertise is to transfer skills used in one problem domain to another (Ormerod,

1990). The transfer of skills approach is appropriate for this research because we

were concerned with the question, “Will students with previous development

experience transfer their existing skills and knowledge to the new development

mindset? And if so will that previous knowledge aid or interfere with the learning

process?”

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

In a study that looked at learning software development from a transfer

perspective within the same mindset Wu & Anderson (1991) found that subjects

who knew LISP (a language in the functional mindset) transferred their knowledge

to the production of PROLOG (also in the functional mindset) solutions, especially

when they had been shown LISP solutions to the problems. Two studies (Scholtz

& Wiedenbeck, 1990, 1992) found programmers were able to make use of their

previous knowledge base when learning a new language in the same development

mindset.

From a transfer of skills perspective, the shift from procedural to object-

oriented techniques has been addressed in a small number of studies. One study

observed procedurally oriented developers trying to understand Smalltalk code by

using a procedurally motivated strategy (Campbell, Brown, and DiBello, 1992).

Whereas another study observed that experienced procedural oriented developers

unsuccessfully mapped new object-oriented concepts onto their procedurally

oriented development knowledge (Nelson et al., 1997). They identified five

categories of object-oriented learners (slow and steady, well-rounded, single-

paradigm, minimalists and zealots) who adopted different strategies to overcome

the obstacles experienced in the learning process. In their study of procedural

programmers learning object-oriented concepts both Due (1993) and Manns and

Nelson (1996) found that the biggest training issue with regard to object-oriented

techniques is the mindshift from procedural to object-oriented thinking.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Research to date indicates that when learning object-oriented techniques,

experienced developers try to understand the new object-oriented concepts from

their procedurally oriented perspective. Existing research in the software

development education field has determined that making the transition from

procedural to object-oriented techniques is difficult. But to date, no one has

investigated why the transition is so difficult. This research sought to understand

the learning processes and the impact of previous knowledge on procedural expert

developers during the shift to object-oriented techniques.

As stated earlier, during the learning process the learner may attempt to map

knowledge from familiar domains (procedural software development mindset) to the

new domain (object-oriented development mindset). When an unfamiliar event is

introduced, the learner activates the schema that is perceived to most closely match

the event. With the introduction of object-oriented methods, the learner may

activate the procedural software development schema. The new information is

compared against existing schema and either refines the existing knowledge or

creates a new schema. In the case of learning a new programming language within

the same mindset much of the new information is consistent with the schema.

Therefore the information refines the existing schema. In the case of learning a

new development mindset (such as OO) much of the new information is

inconsistent with the active schema. Eventually a new schema will be created, but

during the learning process the learner attempts to map the new knowledge onto the

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

old schema. This causes the learner to create an incorrect analogy and experience

proactive interference.

When a learner makes an incorrect analogy (negative transfer) the existing

body of knowledge is said to interfere with the assimilation of new knowledge.

Within the domain of software development an example of proactive interference

(negative transfer) would be if a developer is asked about data and behavior within

each mindset (procedural and OO). The developer’s knowledge of data and

behavior within the procedural mindset would not map correctly onto the object-

oriented concepts of data and behavior (encapsulation).

From this proactive interference procedural experts learning object-oriented

techniques may experience periods in which little progress is made. These periods

of stagnation can be seen in the learning curves as learning plateaus. Since learning

software development is a complex process (rather than a simple process) its

learning curve should more closely resemble Figure 3. But, if the experts

experience proactive interference then the learning curve would more closely

resemble the curve containing plateaus as in Figure 4. Which leads to our

hypotheses:

HI: The learning curve for procedural software development

experts learning object-oriented techniques will include

learning plateau(s).

H2: Proactive interference is positively associated with

learning plateau(s).

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

H3: Learning plateau(s) will occur at certain levels o f

object-oriented experience.

H4: Learning plateau(s) will cluster around certain object-

oriented concepts.

Given the above hypotheses, how do we identify the interference? As there

was no existing measurement instrument we developed and validated a

measurement instrument as part of this study.

Summary of the Software Development Learning Model

The goal of this chapter was to investigate the learning process involved as IS

experts shift from an existing mindset to a new one, and how previous knowledge

interferes with the process. Elaborating on previous models of learning, a new

theoretical model of learning within the software development domain was

produced. During the learning process the learner may attempt to map knowledge or

transfer skills from familiar domains to the new, unfamiliar domain. When a learner

makes an incorrect analogy the existing body of knowledge is said to interfere with

the assimilation of new knowledge. The result is a more difficult learning process

than if there was no previous knowledge.

From this proactive interference procedural experts learning object-oriented

techniques may experience periods in which little progress is made. These periods

of stagnation can be seen in the learning curves as learning plateaus. These

plateaus in the learning curves will occur at certain levels o f object-oriented

experience and will cluster around certain object-oriented concepts.

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Using the previous theoretical arguments as a framework, the next chapter

discusses the research method that was employed to empirically test the

hypotheses. A field study was conducted in order to provide a more

comprehensive examination of the phenomena from an organizational perspective

(Babbie, 1995).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER THREE

Research Design And Method

In the previous chapter we explored the development of learning theory,

schema theory and proactive interference through the field o f psychology. We then

examined the software education literature to aid model development. Lastly, we

developed a new theoretical model of learning within the software development

domain from the intersection of the learning and software development education

research.

This chapter discusses the research design and method used in this study.

The first section details the evocative nature of this study and the need for a

multiple method research design. Since we were studying the process of learning,

the second section discusses the issue of the data collection frame with regard to

the learning process. The next section lays out the research design for the study.

This research was carried out in three phases. In Phase I we elicited domain

specific knowledge from software development experts. In Phase II we created and

validated a measurement instrument from the Phase I data. In Phase m we

administered the Software Development and Maintenance Approach instrument to

a large sample of software developers. The final section of this chapter summarizes

the research design.

Evocative Research

A systematic identification of the major constructs for procedural and object-

oriented software development expertise has yet to receive significant attention.

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

General theoretical frameworks have been developed in the software development

expertise field (e.g. Lee & Pennington, 1994; Manns & Nelson, 1996;

Shneiderman, 1976). But the frameworks that have been developed were from

primarily exploratory methods (Detienne, 1995; Nelson et al., 1997; Soloway &

Ehrlich, 1984; Spohrer & Soloway, 1986;). To date, no one has attempted to

operationalize the constructs of object-oriented and procedural software

development expertise so they may be empirically tested. To move this area of

research forward we need to progress from the general, qualitative based, theories

toward quantitative verification. To accomplish that goal we needed techniques

that can bridge the gap from qualitative identification to quantitative verification.

“Evocative” studies address a class of theoretical problems between general

domains with undeveloped theories and specific domains with clearly formulated

theories. These mid-range theories can be evoked through qualitative research

methods using experts in a particular domain as respondents. The theories are then

interpreted through the knowledge found in generalized theories, in this case,

theories of learning and expertise.

It has been suggested that evocative methodologies are appropriate in

examining issues in IS such as software development expertise (Nelson, Nadkami,

Narayanan, and Ghods, 2000). The goal of this study was to operationalize and test

the constructs of object-oriented and procedural software development expertise.

Therefore an evocative approach was appropriate to study this phenomenon. We

used an evocative design in Phase I to elicit the constructs of software development

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

learning theory and develop an instrument to verify the evoked theory.

Longitudinal Approximation

In contrast to prior research, which has examined learning from a static point,

this study examined learning from a dynamic view. To better understand the long

term process of learning, this study examined the transition from the procedural

mindset to the object-oriented mindset. There are two methods that can be used to

study the long-term process of learning: a longitudinal study or a cross-sectional

field study. A longitudinal study follows a single group throughout the entire

learning process. The limitations of a longitudinal study include participant

attrition, cost, and the length of time required to detect changes (Simon & Burstein,

1985). Due to the impossibility of following any one group of software developers

for an extended period of time given current IS job market volatility a cross-

sectional design was used to approximate a longitudinal study (Gerencher, 1999;

Goodner, 2000). A cross-sectional study infers the process from a much larger

group. Cross-sectional data that captures responses at different points in the

process can be used to approximate longitudinal data (Babbie, 1973; Simon &

Burstein, 1969). It is possible to draw approximate conclusions about processes

that take place over time even when only cross-sectional data are available (Babbie,

1973).

Research Design

This section describes the design and data collection procedures used for this

study. This dissertation was conducted in three phases. In Phase I, domain

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

knowledge was elicited from expert procedural and object-oriented software

developers. Cognitive modeling techniques were used to evoke the domain

knowledge of the experts. In Phase II, this domain knowledge was used to create a

measurement instrument. The Software Development and Maintenance Approach

instrument was designed to measure an individual’s object-oriented mindset and if

any proactive interference was present. After the instrument was created, it was

then formally validated. In Phase III the validated Software Development and

Maintenance Approach instrument was administered to a large sample of software

developers.

Phase One: Knowledge Elicitation

The major task of Phase I was to elicit the relevant knowledge of expert

procedural software developers and expert object-oriented software developers so

as to understand their cognitive structures. To understand cognitive structures we

need to study the cognitive representations of the individual (Pennington, 1987).

Cognitive structures have been explored through a number of data collection

methods: structured and unstructured interviews; task performance; and verbal

protocols to name a few (Gordon, 1992). Structured and unstructured interviews

require the interviewer to ask questions of the expert regarding the relevant domain.

With structured interviews the questions are established a priori and follow a

predetermined pattern. Unstructured interviews can be more flexible with the

interviewer asking questions that seem relevant and likely to elicit new

information. With task performance, rules are developed by observing multiple

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

examples of actual task performance under a variety of circumstances. The data

collected from the observation are then used to infer the relationships between

informational input and behavioral/verbal output.

Protocol analysis has been the prominent qualitative analysis method used to

elicit cognitive representations (Ericcson & Simon, 1980; Koubek, Salvendy,

Dunsmore, and LeBold, 1989). In protocol analysis, subjects perform a task and

verbalize their thoughts as they solve the problem. With both task performance and

protocol analysis, because the individual is working at the task level, the data

gathered are low level abstractions that are intertwined with the programming

language used by the individual (Gibson, 1991). The emphasis of this research

study was on the conceptual or high level abstractions that define each mindset.

This information is language independent and needed to be gathered using a

language independent method. Since the expertise gathered was at the conceptual

level and not the task level, task performance and protocol analysis were deemed

inappropriate methods.

An alternative to the previously mentioned methods of eliciting expertise is

causal mapping. Causal mapping is a collection of techniques used to explicate and

assess the structure and content of mental models (Axelrod, 1976; Fiol & Huff,

1992). Causal mapping provides a method to structure and simplify thoughts, to

make sense of them, and to communicate information about them (Fiol & Huff,

1992). Causal mapping can be used at the conceptual level and is thus language

independent. Therefore, casual mapping was the better choice to gather the

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

language independent concepts and higher-level abstractions of each software

development mindset.

Another benefit of the causal mapping technique is its expandability. Causal

maps can be used at both the individual and the group (aggregate) level (Axelrod,

1976; Huff, 1990). Aggregate maps have been successfully used to elicit group

level cognition (Bougon, Weick, and Binkhorst, 1977; Eden, Jones, Sims, and

Smithin, 1981; Narayanan & Fahey, 1990; Fiol & Huff, 1992). Since this study

explored software development expertise at the group level (object-oriented versus

procedural mindsets) it was important to use a method that adapted to the aggregate

level.

Revealed Causal Mapping.

There are several forms of causal maps that allow researchers to create

theoretical representations of a phenomenon (Boland et al., 1994; Bougon et al„

1977; Eden, Ackerman, & Cropper, 1992; Ford & Hegarty, 1984; Narayanan &

Fahey, 1990; Zmud et al., 1993). To understand the cognitive representations of

experts we used a form of causal mapping called revealed causal mapping (RCM)

as our foundation. The maps provide a frame of reference for what the expert

knows and exhibits and the reasoning behind the expert’s actions.

There are two approaches to using revealed causal mapping, confirmatory

and exploratory. The confirmatory approach is most appropriate when well-

established theories exist for a given research domain. The exploratory approach is

appropriate when few theories have been developed for the research domain and is

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

consistent with the evocative nature of this study. The exploratory approach

consistent with the revealed causal mapping procedure used by Nelson, Nadkami,

Narayanan, and Ghods (2000) and Narayanan and Fahey (1990) was used for this

study.

Qualitative Identification: Step 1.

In the first step, the data source (domain experts) is selected and narratives

are gathered. This is accomplished through open-ended interviews, which are

discussed later in this section. The researcher’s goal is to gather their knowledge

and cast it into available theoretical frameworks to construct domain specific

theories. The task then is to access relevant experts and assist them in articulating

their mostly tacit knowledge. To accomplish this task expert object-oriented and

expert procedural software developers were identified using a snowball technique

(Shanteau, 1987, 1992) and convenience sample (Stone, 1978).

Sampling Method.

Snowball sampling is a method used when members o f a domain cannot

easily be located by random sampling or by screening, and where the members of a

domain know other members of the domain (Simon & Burstein, 198S). One

application of the snowball sampling technique is in the surveying of rare

populations (Simon & Burstein, 1985). The snowball method was appropriate for

this research because we were dealing with a rare population {expert software

developers). The snowball technique asserts that those individuals closest to a

domain are appropriate to define the experts of that domain (Shanteau, 1987,1992).

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The initial respondent is chosen and additional respondents are obtained from

information provided by the initial respondent. One expert identifies another and

that expert identifies another, and so on. Once identified, each expert software

developer was interviewed (Axelrod, 1976; Huff, 1990).

The snowball sampling method is a nonprobability method and consequently

there is a potential for sample bias. The bias results from the person who is known

to more people having a higher probability of being mentioned than the person

known only to a few others (Sudman, 1976). This bias was minimized for this

project because we asked software development professionals to identify others in

their area with expertise. Professionals in a field are competent to identify a

consistent set of attributes they associate with expertise (Abdoimohammadi &

Shanteau, 1992). Thus selection was based on expertise and not familiarity.

Sample.

The participants in Phase I were expert procedural and object-oriented

software developers, as acknowledged by their peers using the snowball sampling

technique detailed above. Organizations were selected based on their identification

of available “expert software developers” and their willingness to participate. As in

aiiy organizational field study, the organization’s willingness to participate was a

determining factor in their presence in our sample. Over fifteen organizations of

various sizes (15-10,000 employees) and industries (e.g., telecommunications,

manufacturing, consulting, and services) provided access to their software

developers. Table 2 describes the Phase I participants.

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Interview Method.

The interview process consisted of open-ended interviews with probes

(Rossi, Wright, and Anderson, 1983). An interview guide was adapted from

Nelson, Armstrong, and Ghods (in press) by the primary researcher to facilitate the

interview process. The guide was then validated by two researchers, one with

extensive RCM experience and the other a software development expert. See

Appendix A for the interview guide. During the interviews respondents were asked

questions regarding how they think about software development. For example:

Think of a time when you have been given a requirements

document (for example, to develop an accounting system) and

asked to produce an object-oriented (procedural) solution. What

was the first thing you thought about?

Based on the respondent’s answer to this question, follow up

probes were asked to elicit further details regarding their software

development thought process (e.g. “What did you think about next?”).

The interviewer did not constrain the responses to the questions, but

allowed the participant to expound. Each interview lasted from 30 to 90

minutes. The interviews were transcribed into a document format

ranging from 4 to 14 pages.

Point of Redundancy.

Within the RCM method, the researcher should interview to the point of

redundancy, which calculates the adequacy of the sample size (Axelrod, 1976). In

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

causal mapping research the point of redundancy, or saturation, among the subjects

represents the point at which further data collection would not lead to the

identification of additional concepts. This point serves as a way of establishing the

adequacy of the sample. Prior to commencement, we estimated the number of

interviews necessary to reach redundancy or saturation of concepts at 60 (30

procedural and 30 object-oriented). The point of redundancy is operationalized by

aggregating the concepts mentioned by each participant. The difficulty is that the

point of redundancy is not calculated until after the interviews have been completed

and the classification scheme has been developed. If redundancy is not reached,

additional interviews are conducted. For this project, redundancy on the procedural

concepts was reached at 7 participants and at 20 participants for the object-oriented

and is demonstrated in Figure 5. The point of redundancy suggested that the

achieved sample of 55 respondents (35 object-oriented and 20 procedural software

development experts) was more than sufficient to capture all of the relevant

concepts.

Qualitative Identification: Step 2.

The two main considerations within this step are the identification of the

causal and evoked statements and the establishment of the reliability of the

identification procedure (Axelrod, 1976). The first task is to identify the causal

statements from the interview transcripts. Causal statements are statements that

imply a cause-effect relationship. Some of the key words used in identifying

explicit causal statements are “if-then,” “because,” “so,” and so forth. Due to the

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

cognitive nature of this study it was determined that in addition to explicit causal

statements, implicit causal statements should also be recorded. The key words used

in identifying implicit causal statements are “think,” “know,” “use,” and “believe”.

The two sets of causal statements (explicit and implicit) were kept segregated

throughout the research project. Consistent with Narayanan and Fahey (1990), all

the statements in the form of concepts and cause-effect relationships are captured in

the language of the experts. Examples of these statements are listed in Table 3.

In addition to causal statements, evoked statements were also elicited from

the transcripts. An evoked statement is a declarative statement made by an expert

regarding a specific domain. It is a statement that is a reflective indicator of the

underlying concept. In this study the evoked statements concerned software

development concepts. The statements expressed the components of object-

oriented and procedural software development as seen through the expert software

developer’s eyes. The evoked statements were elicited in the same ma mer as the

causal statements. Each transcript was reviewed and the evoked statements were

identified. A statement was classified as evoked if it contained a definitional

reference to either mindset. Examples of evoked statements are presented in Table

4.

To establish the reliability of the identification procedure, each interview text

was coded by the primary researcher and one o f the three raters. The raters were

deemed appropriate to identify both causal and evoked statements because of their

familiarity with the technique and the domain under study. A glossary of software

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

development terms was provided to the researchers for identification purposes. See

Appendix B for the glossary of terms. The glossary was created from the

interviews and existing software development textbooks. There were two rounds of

coding that covered 12 interviews. Six object-oriented and six procedural

interview texts were chosen at random from the object-oriented and procedural

interviews. Comparisons were made for agreement and disagreement between the

researchers. Where disagreement occurred the discrepancies were resolved through

discussion.

The reliability between the researchers was calculated by measuring the level

of agreement on terms, linkages, and whether a statement was evoked, causal, both

or neither. The level of agreement between the researchers was measured using the

Fisher exact test and the Chi-Square (2) test. For the Fisher test, the two-sided p

value for causal statements (.840) and evoked statements (.643) indicates an

acceptable level of agreement among the researchers. For the 2 test the data

confirm an acceptable level of agreement among the researchers for causal

statements (2 = .135, d f=1, p=ns) and evoked statements (2 = .219, df = 1, p=ns).

The Kruskal-Wallis significance test was performed to compare the two

groups of experts (procedural and object-oriented). The two groups were

determined equivalent in terms of the causal statements (b= .011, d f=1, p= ns) and

the evoked statements (b= 2.557, df=l, p= ns) they produced. Thus the two groups

could be treated as equals for coding purposes.

Qualitative Identification: Step 3.

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

In the next step, the relevant concepts are identified from the statements

(Narayanan & Fahey, 1990). The coding process begins with grouping frequently

mentioned words in the statements. The categories are identified as the narrative

texts are reviewed. The statements containing the same concept were grouped

together. A word or word group was created that captured the essence of the

statement. For example, the sentence “You group the requirements document items

based on functions” was labeled “functions”. A second researcher who also is a

software development expert reviewed the statements and independently placed

them into categories. Comparisons were made for agreement and disagreement.

Where disagreement occurred the discrepancies were resolved through discussion.

Once the conceptual level scheme was developed, the statements were placed into

the appropriate categories. If a statement fit more than one category the sentence

was placed in both categories.

A second round of concept identification was accomplished by four

additional individuals working independently. Three object-oriented and one

procedural expert validated the concept level scheme. The interrater reliability

between the researchers was measured using the Spearman’s Rank Correlation

Coefficient and the Chi-Square (2) test. The value for the Spearman’s Rank

Correlation test (.629) indicates an acceptable level of agreement among the

researchers. The value for the 2 test (2 = 11.071, dfr=5, p=ns) confirms an

acceptable level of agreement among the researchers. The participants then worked

together to resolve any discrepancies in the identification of the concepts.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

There were a total of 78 concepts identified (53 object-oriented and 25

procedural). After further analysis of the classification scheme a few of the

concepts were determined to be conceptually equivalent. From the object-oriented

list it was found that the statements included in the “behavior,” “method” and

“responsibility” categories were not conceptually distinct. The statements under

these concepts were combined into the “method” concept. For the procedural list

“functional decomposition” and “top down design” were determined to be

conceptually equivalent and combined into the “functional decomposition”

concept. The positively and negative worded statements for the “object-oriented

development” concept were combined. This took the total number of concepts to 74

(50 object-oriented and 24 procedural).

Qualitative Identification: Step 4.

In the next step a construct and meta-construct level classification scheme

was developed. There were four iterations of the construct and meta-construct level

classification scheme. The first cut of the construct level classification scheme was

accomplished by the principal researcher. Three categories were initially created:

“Definitions,” “Benefits” and “Techniques”. In the second iteration, the

“Definitions” category was further subdivided into 4 categories: “Definitions,”

“Actions,” “Interactions,” and “Elements”. At that point the construct level

classification scheme was reviewed by two object-oriented and one procedural

software development expert.

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

In the third iteration the “Definitions” category was relabeled “Application

Design”. The “Interactions” and “Actions” categories were reformulated into

Design and Runtime respectively. These meta-constructs were further broken

down into “Design Characteristics,” “Design Relationships,” “Execution

Relationships” and “Execution Interaction”. The “Elements” category was

relabeled “Object (Procedural) Characteristics” and grouped with “Techniques” and

“Benefits” under the “Conceptual” meta-construct label. In the final iteration, the

“Conceptual” meta-construct was used only for the “Object (Procedural)

Characteristics” construct. The ‘Techniques” category was renamed “Analysis” at

the meta-construct level and subdivided into “Analysis Tools” and “Analysis

Techniques” constructs. The conceptual scheme was finalized with 6 meta

constructs: Application, Design, Runtime, Conceptual, Analysis and Benefits.

There were 9 constructs: Application Design; Design Characteristics, Design

Relationships; Execution Characteristics, Execution Interaction; Object

(Procedural) Characteristics; Analysis Techniques, Analysis Tools; and Benefits.

See Table 5 for the Expert Classification Scheme.

Qualitative Identification: Step 5.

Once the classification scheme was completed, the causal and evoked

statements were placed into the appropriate categories. A total of 366 causal

statements and 899 evoked statements were elicited from the transcripts.

Phase Two: Instrument Development

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The Software Development and Maintenance Approach instrument was

developed from the statements elicited in the Qualitative Identification Phase of the

project. The 1265 statements (366 causal + 899 evoked) that were categorized

based on the classification scheme were evaluated to determine their

appropriateness for inclusion in the instrument. The criteria for inclusion in the

instrument were the statement’s content (was the statement definitional or merely

commentary), accuracy, and parsimony. As a starting point, five statements per

concept were selected for inclusion in the instrument. A statement was selected

based on its content and clarity. The first draft of the Software Development and

Maintenance Approach instrument consisted of 370 statements (74 concepts x 5

statements per concept).

We then reviewed the instrument to determine an appropriate length. The

criteria for questionnaire length should include cost, response rate, and the limits of

respondent willingness to answer questions (Fowler, 1993). Because the

instrument was being administered online, its length did not impact the costs

incurred. But the length of an instrument is seen to have a negative impact on

response rates in that the longer the instrument, the more likely it is that the

response rate will be lower (Bolton, Chapman, and Zych, 1990; Herberlien &

Baumgartner, 1978; Steele, Schwendig, and Kilpatrick, 1992; Yammarino, Skinner,

and Childers, 1991). One study discovered that participants in business-oriented

studies were more cognizant of survey length than consumers (Jobber & Saunders,

1993), while another found survey length to be one of the main reasons for a

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

business persons'non-response (Tomasokovic-Devey et al., 1994). Written

questionnaires should not exceed 30-45 minutes in length if you want to obtain

reasonable response rates (Sudman & Bradbum, 1982). It took the primary

researcher two hours to complete a written version of the 370-item instrument.

Therefore, based on past findings, 370 items were deemed too many to realistically

answer.

The Expert Classification Scheme was scrutinized to determine if any

concepts, constructs or meta-constructs could be combined or eliminated. Upon

further analysis of the classification scheme two constructs, “Benefits” and

“Analysis Tools” were eliminated from the instrument development process. These

concepts, while part of object-oriented development were determined to be

outcomes of using the mindset not components of the mindset. The “Benefits”

construct consisted of concepts such as “change,” “extensibility,” “natural,” and

“reuse”. Since we were trying to capture the cognitive components of each mindset

not the outcomes of using the mindset, the “Benefits” construct was deleted from

the instrument. This eliminated 17 concepts (14 object-oriented and 3 procedural).

The “Analysis Tools” construct was also deleted from the instrument

development. This construct was eliminated from the instrument because the

concepts in this construct were tools used by the developers not components of the

development mindset. The “Analysis Tools” construct consisted of 6 concepts:

“class diagram,” “CRC cards,” “design patterns,” “sequence diagram,” “UML,”

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

and “use cases”. This eliminated 8 concepts (6 object-oriented and 2 procedural),

making a total of 49 concepts (30 object-oriented and 19 procedural).

The texts were then reviewed for outliers, concepts that were mentioned by

only 1 individual. For example only one individual mentioned the concept

“thread,” and he mentioned it four times. In contrast, the average mention rate was

19.38 for an object-oriented concept and 10.00 for a procedural concept.

Therefore, the “thread” concept was determined to be an outlier and deleted from

the instrument. Other concepts that were deleted based on their outlier position

were “aggregation” and “glossary” from the object-oriented mindset, and “utilities”

from the procedural mindset.

Three concepts (“iterative,” “business knowledge,” and “testing”) were

eliminated from the instrument because they did not provide any insight regarding

the transitional learning process. “Iterative” (as in an iterative method of

developing software), “business knowledge” and “testing” were identified as

important aspects of software development regardless of the development mindset

(procedural or object-oriented). Since there was no discernment between

respondents these concepts were eliminated. “Process model” was eliminated

because it was confusing and deemed not applicable to the transition from

procedural to object-oriented software development. This took the total to 41

concepts (25 object-oriented and 16 procedural). Ten statements were deleted for

clarity, irrelevance or confusion, making a total of 195 statements for the pretest.

Pretest Sort.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

A pretest sort was used to address the internal and construct validity of the

preliminary Software Development and Maintenance Approach instrument. A

convenience sample of five IS experts (three object-oriented and two procedural)

participated in the pretest sort. The criterion for selection was the subject’s

willingness to participate. A list of 195 statements (approximately 5 statements per

construct) was presented to the subjects along with a separate list of 41 constructs.

The facilitator had the subjects sort statements by construct (Anderson & Gerbing,

1991). Based on the results of the sort the statements were re-worded or deleted as

needed. The pilot instrument was developed from the remaining list of 190

statements.

Pilot Instrument.

A pilot test o f20-50 subjects is usually sufficient to discover the m ajr.r flaws

in a survey and perform statistical analysis (Sudman, 1976). The Software

Development and Maintenance Approach instrument was given to individuals in a

group setting with group sizes ranging from 1 to 20. Eight subjects (from the group

of 20) had no previous software development experience and were eliminated from

the pilot test. The final sample consisted of 31 respondents. The participants

represented a cross section of procedural experts, object-oriented experts and

individuals at various points in the learning process. Table 6 describes the Phase II

participants.

The instrument had two sections: Section 1 contained questions regarding

how developers think about software development and Section 2 contained

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

demographic questions. The questions in Section 1 covered both the procedural

and object-oriented development mindsets. Each question was rated on a five-point

Likert scale (Babbie, 1979, p. 410; Nachmias & Nachmias, 1981, p. 278-280) using

the labels “strongly disagree”, “disagree”, “neither agree nor disagree”, “agree”,

and “strongly agree” with the addition of a “don’t know” option. A 5-point scale

was used because we were looking at a person’s mindset. As previously stated, a

mindset is a distinctive viewpoint that determines how an individual views reality

(Culbert, 1996). The participant (experienced software developer) thinks about

software development from one mindset or the other. It was expected that the

participant would respond from a binary perspective (the statement is consistent or

inconsistent with the participant’s mindset). Therefore a 5-point scale was

sufficient to discriminate between participant responses.

The response choices were also reviewed. The selection of the wording of

the middle response (Sudman & Bradbum, 1982, p. 141) choice “neither agree nor

disagree” was scrutinized. Several other options including “undecided” and

“neutral” were discussed but discarded. The selection of the “neither agree nor

disagree” wording was based on the respondent pool and the study domain. The

researchers felt that a software developer would not be neutral or undecided about a

software development mindset. The “neither agree nor disagree” option more

closely represented the cognitive position of the subjects.

Because the instrument was anchored in the object-oriented perspective the

“don’t know” response choice was included. It was felt that respondents who were

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

not anchored in the object-oriented perspective needed an option to reflect their

lack of knowledge (Schuman & Presser, 1981, p. 170). The wording of the “don’t

know” option was also closely scrutinized. Several choices were reviewed such as

“uncertain” and “no opinion”. The “uncertain” option was deemed too similar to

the “neither agree nor disagree” option and the “no opinion” option reflected a

different connotation so both were discarded. The “don’t know” option was felt to

most accurately reflect the cognitive state of the respondent. The phrase “no

knowledge or experience in this area” was added to the “don’t know” option. The

phrase was added to further clarify and distinguish the “don’t know” option from

the “neither agree nor disagree” option.

After completing the instrument each respondent was debriefed to determine

if questions were confusing or if the terminology used related in a meaningful way

to the concepts they were intended to measure. The in-depth discussions of each

question checked for content, clarity and meaning. The criterion for keeping the

question was its clarity, meaningfulness, ability to measure the construct, and

understandability. Based on the evaluations of the participants the questions were

further refined and/or deleted. Each version of the instrument incorporated the

improvements suggested by the participants debriefed up to that point. The

instrument was continuously re-edited until a form of consensus was reached.

Through the pilot study phase, the number of questions was gradually reduced from

190 to 175.

Pilot Study Data Analysis.

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Statistical analysis was performed on the pilot study data using SPSS version

10.0. Thirty-one subjects were used in the initial analysis. Histograms were

created and reviewed for each of the 175 questions. At a question level the

distinction of responses was observed. Individuals with greater object-oriented

experience answered “strongly agree,” to the object-oriented questions and

“strongly disagree” to the procedural questions. The individuals with only

procedural experience answered “strongly disagree,” to the object-oriented

questions and “strongly agree” to the procedural questions. The individuals in

transition were scattered about the scale. These results indicated that the items

were detecting differences in the individual’s mindsets.

Scale reliabilities were used to determine the three questions to retain for the

final instrument (Huck, 2000). Scale internal consistency reliability was assessed

using Cronbach’s alpha (Huck, 2000, p. 91). The ‘interface’ and ‘class hierarchy’

concepts were deleted because their scale reliabilities were well below the .60

recommendation for newly developed scales (Nunnally, 1967). Only 5 concepts

were between .60 and .70 scale reliability, all others were above .70. See Appendix

C for scale reliabilities. Correlations between variables were analyzed, and

questions were again deleted or re-worded for clarity.

The focus of this study was on understanding the shift to object-oriented

techniques and how procedural knowledge interferes with the process. We were

not concerned with procedural knowledge per se, but only in the procedural

knowledge as it interfered with the object-oriented learning. Therefore, procedural

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

variables were deleted if they did not correspond to object-oriented variables. For

example, the procedural concept “data model” corresponds with the “object model”

concept, so “data model” was included in the instrument. Those procedural

concepts that did not correspond to an object-oriented concept and were deleted

were ‘control’, and ‘systems development life cycle’.

After completing the group level analysis, the sample was subdivided and the

responses were analyzed by subgroup. The 31 subjects were subdivided into

procedural experts (8), object-oriented experts (6) and transitioners (17). The

divisions were made based on the individual’s years of procedural and object-

oriented software development experience, and the number of projects he or she

participated in with both mindsets. The “transitioners” were procedural software

developers who had some exposure to the object-oriented mindset. The subgroup

responses were analyzed using histograms, and the data was appropriate for each

group. The expert histograms were highly skewed to the scale extremes and the

transitioning group histograms were fairly normally distributed.

The transitioning group of 17 participants was analyzed in more detail and

was subdivided into three groups based on their years o f procedural and object-

oriented software development experience, and the number of projects participated

in with both mindsets. Subgroup 1 consisted of seven participants who had no

object-oriented experience, but had participated in one object-oriented project. The

histograms for subgroup 1 were skewed toward procedural responses. Subgroup 2

consisted of six participants, who had 1-3 years of object-oriented experience, and

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

participated in one object-oriented project. The histograms for subgroup 2 were

also skewed toward procedural responses, but not as strongly as group 1. Subgroup

3 consisted of four participants, who had 2-3 years of object-oriented experience,

and participated in two object-oriented projects. The histograms for subgroup 3

were slightly skewed toward object-oriented responses. These results confirmed

that the instrument was detecting differences in the developers’ mindsets. At that

point it was determined that further subgrouping was not feasible or needed.

Once the data analysis was complete, two content experts and one survey

construction expert scrutinized each question of the instrument. Question wording

and grammatical changes were made. The final instrument consisted of 90

questions covering 34 concepts (22 object-oriented and 12 procedural). The

instrument was formatted into its online appearance. The result of Phase II was a

comprehensive online instrument designed to measure the extent of an individual’s

object-oriented software development mindset.

Phase Three: Quantitative Verification

The major task of Phase HI was to distribute the online instrument to a large

sample population of software developers so as to understand their cognitive

processes with regard to software development.

Sample.

In Phase m the validated instrument was administered to a large sample of

software developers. Study respondents were chosen based on a key-informant

method (Bagozzi, Yi, and Phillips, 1991). The instrument was given to procedural

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

developers with various levels of expertise in the object-oriented development

mindset and object-oriented developers with no previous procedural experience.

Participants in this phase of the study were different than the respondents used in

either of the previous phases of the project. Organizations were selected based on

their identification of available “software developers” and their willingness to

participate. As in any organizational field study, the organization’s willingness to

participate was a determining factor in their presence in our sample. Over 32

organizations of various sizes (5-100,000 employees) and industries (e.g.,

telecommunications, manufacturing, consulting, and services) provided access to

their software developers. The number of organizations represents a broad array of

organization and industry types. Table 7 describes the Phase III participants.

Data Collection.

The research instrument used for the collection of software development

mindset data was the software development and support questionnaire. The

questionnaire asked questions regarding how an individual thinks about software

development. This instrument contained multiple questions for each of the 34

variables, all o f which were tested on the pilot instrument. This instrument used a

five point Likert Scale numbered from 1 to 5 (Strongly Disagree, Disagree, Neither

Agree Nor Disagree, Agree, Strongly Agree) with a “Don’t know, no knowledge or

experience in this area” option numbered 0. The response choices were listed

horizontally across the screen with the “Don’t know, no knowledge or experience

in this area” as the first option at the left edge of the screen. The most socially

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

undesirable response choice was listed first (Sudman & Bradbum, 1982, p. 156). If

the socially desirable choice(s) are placed first, the respondent might choose

without reading through the entire list. By placing the socially desirable choices at

the end (to the right reading from left to right), this increases the likelihood that the

respondent would review all of the response choices before making a selection.

Data collection was accomplished via online instrument. The instrument was

developed using SPSS Data Entry Builder version 2.0. The data was collected

directly into an SPSS file for data analysis. The survey was created and uploaded

to the University of Kansas SPSS data server (swift). The results were then

captured by the server and transferred to the researcher’s data collection file. Each

participating organization provided a liaison for the researcher to work with. An

email message was sent to the contact person at each organization. He or she

would then forward the email (which included the instrument URL) to their

software development personnel. Although some selection bias may have resulted

from this technique, this manner of selection greatly aided the distribution of the

instrument and showed internal support for the study by the organization. The

URL for the survey was:

http://swift.cc.ukans.edu/darmstrong/diasurvey/webfiles/index.htm.

When the URL was activated from the respondent’s browser, the first screen

to be seen was the “form loading” screen. See Appendix D for the “Form Loading”

screen. A limitation of the SPSS software is the need for a Java script compatible

browser. Respondents needed a browser that was compatible with Java scripts,

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://swift.cc.ukans.edu/darmstrong/diasurvey/webfiles/index.htm

www.manaraa.com

such as Internet Explorer version 4.0 or higher or Netscape version 4.7 or higher.

The message on the browser informed the respondent that he or she needed a Java

script compatible browser. The next screen was the software development

instrument. See Appendix E for the Software Development and Maintenance

Approach instrument format. A brief description of the study was provided prior to

the Section I questions. At the completion of the instrument there was a “submit”

button. When the respondent clicked on that button the data was transmitted to the

SPSS server and a “thank you” screen appeared. See Appendix F for the “Thank

You” screen. This screen thanked the participant and asked them to close their

browser. This statement was inserted because if the respondent used the back

feature on their browser they could end up submitting their data several times.

Data collection began on March 5,2001 and was concluded on March 30,2001.

The initial email was sent on March 5, 2001. Follow up emails were sent on March

13, 2001 and March 20, 2001. In addition, telephone contact was made with three

organizations on March 20,2001. Due to technical incompatibilities with one

organization’s Internet browser, the instrument was sent as an attachment via email.

The participants of this organization responded directly to the primary researcher

via email. Data collection was concluded on April S, 2001.

Summary of Chapter Three

Chapter Three explicated the research design and method for this study. The

research design, sampling strategy and procedure for the three phases of the study

were presented. In Phase I domain specific knowledge was elicited from software

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

development experts. In Phase II a measurement instrument was created from the

Phase I data and validated. In Phase III the instrument was given to a large sample

of software de*'elopers. The next chapter discusses the results of the data analysis

for the Software Development and Maintenance Approach instrument.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER FOUR

Data Analysis And Results

The research questions, "Why is it difficult for procedural experts to leam

object-oriented development?” and “Where in the learning process are developers

experiencing difficulty?” drove the method of data analysis. We gathered data

about an individual’s knowledge of object-oriented and procedural software

development. We expected to categorize respondents based on common threads

across the learning process. Does everyone have trouble with the concept of

polymorphism, or only under certain conditions? We were looking for

relationships between knowledge and experience within the data. One method for

understanding relationships is cluster analysis (Gordon, 1999). In this study we

clustered the responses of software developers. This chapter discusses the data

analysis procedure used and the findings of this study. The first section details the

two primary data analysis methods used: cluster analysis and factor analysis. The

second section addresses the hypotheses and reports the findings from the study.

The final section of this chapter provides a summary of the findings.

Cluster Analysis

Cluster analysis refers to techniques used in the classification of similar

objects into groups (Kaufman & Rousseeuw, 1990). Other names given to cluster

analysis are “numerical taxonomy,” “pattern analysis,” and “typing” (Lorr, 1983).

One must be careful to distinguish cluster analysis from discriminant analysis.

Discriminant analysis is a process undertaken to differentiate between groups

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

formed on an a priori basis. The goal of discriminant analysis is not to discover

groups but to identify a set of characteristics that can significantly differentiate

between the groups. With cluster analysis, the number and nature of the groups are

not known in advance. The clustering process generates a classification scheme for

unclassified data (Lorr, 1983). For this study, cluster analysis was deemed the

appropriate analysis technique because we were dividing the data into groups based

on relationships within the data and without a preconceived idea of the groupings.

Clustering techniques have several goals including: finding a typology or

classification, investigation of a conceptual scheme for grouping entities, data

exploration and hypothesis generation, and hypothesis testing or classification

affirmation (Aldenderfer & Blashfield, 1984, p. 9). Many studies address multiple

goals when using clustering techniques. In this study our goal was to develop a

classification and a conceptual scheme to explain the classification.

There are five basic steps that characterize all cluster analysis studies: 1)

selection of a sample to be clustered; 2) definition of a set of variables that measure

the respondents; 3) computation of similarities among the respondents; 4) creation

of groups; and 5) validation of the resulting clusters (Aldenderfer & Blashfield,

1984).

Sample Selection

As described in Chapter Three, the sample consisted of software developers

with a wide range of experience. Since we were interested in expert procedural

developers making the shift to object-oriented techniques, the sample frame

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

population was expert procedural software developers. If the participant had less

than 4 years of procedural software development experience they were omitted

from the sample. Four years was selected as the cutoff point based on previous

work in this area (Manns & Nelson, 1996). A total of 148 responses were

originally recorded with 17 being eliminated due to the respondents’ lack of

software development experience. This left a sample of 131 respondents.

Variable Definition

Statistical analysis began by examining the histograms and scale reliabilities

of the relevant variables from the field study. Histograms and scatterplots were

used to examine the data visually at the item and concept level. Findings were

consistent with pilot study results and indicated that the items were detecting

differences in the individual’s mindsets. All statistical computations were

performed using SPSS v 10.0. Two-tailed tests of significance were used in all

data analysis (Siegel, 1956, p. 13; Huck, 2000).

Alpha coefficient ranges in value from 0 to 1 and describe the reliability of

factors extracted from scales. The higher the score, the more reliable the generated

scale. A generally acceptable reliability coefficient for an established scale is 0.7

(Nunnally & Bernstein, 1994, p. 265), but a lower threshold of 0.6 can be used in

the development of a new measurement instrument (Nunnally, 1967). For concept

level Cronbach’s coefficient alpha see Appendix C. All concept level scale

reliabilities were above .60 with the exception of the “object” concept. The

reliability for the object scale was = .2730. There were 2 items in the “object”

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

scale. Upon further analysis, one of the two items loaded onto the “attribute”

concept. We determined that the object scale was not measuring the “object”

concept and was therefore not used in any further data analysis. This left 33

concepts in the instrument.

Existing theory should be used to guide the choice of appropriate variables.

As there was no existing theory to draw on, we used the Expert Classification

Scheme developed in Phase I to guide variable selection. The 33 concepts on the

instrument were measured using one to four items (questions). Each concept

variable was scaled using the mean of the items before clustering. It is common for

researchers to attempt cluster analysis around too many variables (Aldenderfer &

Blashfield, 1984; Everitt, 1980; Lorr, 1983). One procedure for overcoming this

difficulty is to perform a principal components factor analysis on the data (Everitt,

1980). This reduces the number of variables to a parsimonious set that can be used

in the analysis. The greater the number of positively correlated measures that are

combined into a summary score, the more reliable the composite (Cronbach &

Gleser, 1953). The construct level of analysis was deemed more appropriate for

this aspect of the research and a factor analysis was conducted on the data.

Factor analysis consists of a collection of procedures for analyzing the

relations among a set of random variables observed or measured for each individual

in a group (Cureton & D’Agostino, 1983). The factors are random variables that

cannot be observed or measured directly, but which are presumed to exist in the

population and hence in the sample. The random variables of the set to be analyzed

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

may consist of any attributes on which the members of the group differ. Factor

analysis is a way of decreasing the number of variables to cluster on.

A principal components factor analysis with varimax rotation was used to

determine the construct level variables. Past research has provided guidelines for

the minimum sample size needed to conduct factor analysis. Some have suggested

the ratio of sample size to number of variables as a criterion: the recommendations

range from 2:1 to 20:1. Others have suggested using a minimum sample size as the

criterion. For example, Lawley and Maxwell (1971) suggest that there should be

51 more cases than the number of variables. In their 1988 study, Guadagnoli and

Velicer found that absolute sample size was more important than functions of

sample size in determining stable solutions and recommend 100 to 200

observations. Since our sample of 131 respondents fell within the acceptable

range, all 33 concept level variables were included in the factor analysis. Table 8

lists the four constructs revealed in the data.

The first factor (construct) was the labeled the “Basic Level” construct. The

title “Basic Level" was chosen because understanding the concept of an object and

that everything is an object is fundamental to understanding object-oriented

techniques. The “Basic Level” construct is comprised of introductory concepts, the

first basic ideas that are introduced to individuals as they learn about object-

oriented techniques. The Cronbach’s coefficient alpha for this factor was .8949.

The second construct was labeled the “Object Level” construct. The title

“Object Level” was chosen because these concepts primarily focus on the

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

development and functioning of an object. The Cronbach’s coefficient alpha for

this factor was .9534. The third construct was labeled the “System Level”

construct. The title “System Level” was chosen because these concepts focus on

how objects function within the larger system. The Cronbach’s coefficient alpha

for this factor was .9252. The final construct was labeled the “Procedural”

construct. This construct included all of the procedurally oriented concepts. The

Cronbach’s coefficient alpha for this factor was .9580.

The conceptual scheme developed from the instrument data was significantly

different than the structure developed from the interview data. The classification

scheme developed in Phase I was based on data from two distinct groups, expert

procedural and expert object-oriented software developers. The conceptual scheme

developed in Phase III was based on data from expert procedural software

developers learning object-oriented techniques. These individuals were at various

stages in the learning process and thus their conceptual scheme reflected the

learning process. The structure found in Table 8 was utilized for the analysis

because it was consistent with the data in this phase o f the study and with structures

found in previous research (Nelson et al., 1997).

Similarity Measures

The similarity between respondents can be decomposed into three parts:

shape, the pattern of dips and rises across the variables; scatter, the dispersion of

the scores around their average; and elevation, the mean score of the case over all

of the variables (Aldenderffer & Blashfield, 1984). There are four types of

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

similarity measures: distance, correlation coefficients, association coefficients and

probabilistic similarity coefficients. The similarity measures address the three

components (shape, scatter and elevation) differently. Correlation and distance

measures are the common choices in the social sciences. With a distance measure

the two cases are identical if each one is described by variables with the same

magnitudes (0 distance). The most popular distance measure is the Euclidean

distance or Squared Euclidean distance. The disadvantage of using a distance

measure is that the similarity estimation is strongly affected by elevation

differences. A correlation coefficient (the most popular is the product-moment

correlation coefficient) is used to determine the correlation between respondents.

The disadvantage of using a correlation measure is its sensitivity to shape at the

expense of the magnitude of differences between the variables. Both the

association correlation and probabilistic measures are used with binary data.

If the similarity is assessed using a distance function, all of the information is

preserved. If the raw scores are converted to deviation scores then the source of

information is lost. If the similarity is assessed using a correlation coefficient, the

information regarding the elevation and scatter are lost. Thus the Squared

Euclidean distance similarity measure was used to retain as much information as

possible.

Clustering Method

There are many clustering methods available (e.g. hierarchical, partitioning,

factor analytic, density, and clumping), but the two predominant forms of cluster

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

analysis are partitioning and hierarchical. With the partitioning method a single

partition is constructed with k clusters. With the hierarchical method the hierarchy

is a nested set of non-overlapping clusters in which each level is assigned a rank

(Lorr, 1983, p. 19). The hierarchical method is preferred when there is structure in

the data, or a developmental sequence. It is also used when the number of groups

in the data is unknown. A disadvantage is that hierarchical methods make only one

pass through the data, and a poor early partition of the data cannot be modified

later. The partitioning method’s advantage is its iterative property. Poor initial

cluster selection can be overcome through the clustering process. To draw on the

strengths (and diminish the weaknesses) of both methods we used both hierarchical

and partitioning methods. We used the hierarchical method initially because we

did not know the number of groups a priori. From the results, the number of

groups and outliers were identified. After the identification and subsequent

elimination of outliers, the cluster analysis was rerun using a partitioning method

(Aldenderfer & Blashfield, 1984, p. 61; Everitt, 1980, p. 103).

Within the hierarchical methods there are two ways to cluster the cases:

agglomerative and divisive. The agglomerative method starts with each respondent

as a cluster. Then in each step two clusters are merged until only one is left. The

divisive method begins with all participants in one cluster. In each following step

the cluster is split. The division continues until each participant is a cluster. We

used the agglomerative method because of its wide usage in the behavioral

sciences.

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Another decision that must be made with regard to cluster analysis is how the

agglomeration is accomplished. There are several choices including between-

groups linkage, within-groups linkage, single linkage, complete linkage, centroid,

median clustering and Ward’s method. The four most commonly used in the social

sciences are single linkage, complete linkage, average linkage and Ward’s method

(Aldenderffer & Blashfield, 1984).

Single linkage (nearest neighbor) begins by searching for the two most

similar entities in the matrix. It then joins the entities that have the two most

similar individual points. Only a “single link” is required between two entities for

them to merge. Two common problems in cluster analysis are chaining and

reversals. Chaining occurs where single samples join a larger cluster each time.

This causes ordination, and no true hierarchical structure appears. Reversals are

caused when an entity joins another cluster at a higher level of similarity than was

there before. One of the main drawbacks to the single linkage method is its

propensity to chain. Complete linkage (furthest neighbor) adds an entity to an

existing cluster if that entity has a certain level of similarity to all members of the

cluster (Sokal & Michener, 1958).

Average linkage computes an average of the similarity of an entity under

consideration with all entities in the existing cluster and joins the entity to the

cluster if a given level of similarity is achieved using this average value

(Aldenderffer & Blashfield, 1984). Two common variants of the average linkage

method are the median and centroid (distance between groups is distance between

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

group centroids) clustering. The drawback of the centroid method is that if you are

merging two groups of disparate size, the larger group will have a large impact on

the location o f the new centroid. The advantage of median clustering is there is no

impact if the groups being merged are of unequal size.

Ward’s method is based on optimizing the minimum variance within clusters

(Ward, 1963). Ward’s method is also known as the within-groups sum of squares or

error sum of squares (ESS) method. The method works by joining those entities or

groups that result in the minimum increase in the ESS.

One way to compare hierarchical clustering methods is to analyze how these

methods transform the relationships between the points (Aldenderfer & Blashfield,

1984, p. 44). Space contracting methods affect these relationships by reducing the

space between groups in the data. New points tend to be joined to existing groups.

With space dilating methods, new points tend to form new groups. Thus smaller,

more distinct clusters are formed. This also tends to create clusters of roughly

equivalent sizes and shapes. The space dilating methods are seen as superior to

space contracting (Aldenderfer & Blashfield, 1984; Williams, Lance, Dale, and

Clifford, 1971). Complete linkage and Ward’s method are space-dilating methods.

For this study we chose the Ward’s method (hierarchical) to determine the number

of clusters. This selection was made because it is a space dilating method that is

widely used in social sciences (Blashfield, 1980).

The primary goal of this step was to determine the optimal number of groups

in the data. A common problem to all clustering techniques is the difficulty in

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

deciding the number of clusters present in the data (Everitt, 1980, p. 64). Heuristic

procedures were applied to determine the number of clusters present. Using the

dendrogram the hierarchical tree is inspected for different levels of agglomeration.

See Appendix G or the Dendrogram. In addition, the number of clusters implied by

the tree was compared against the agglomeration coefficient. The agglomeration

coefficient is the numerical value at which various cases merge to form a cluster. A

marked jump in the agglomeration coefficient suggests that no new information is

portrayed by the further merger of clusters (Aldenderfer & Blashfield, 1984). See

Appendix H for the Agglomeration Schedule. Note the jump in coefficient from

three clusters (227.383) to two clusters (313.476). From the hierarchical clustering

dendrogram and analysis of the agglomeration schedule, three clusters were

observed and confirmed. A &-means cluster analysis was then performed using

three clusters. The participants were clustered based on the construct level

variables. Table 9 presents the means for the three clusters. The cluster centers for

each construct are plotted on the Figure 6 graph by construct.

We examined the means for each cluster on each dimension to assess how

distinct our three clusters were. Ideally, we would obtain very different means for

most, if not all dimensions, used in the analysis. Comparisons of the cluster means

were conducted using t-tests. The test was conducted to confirm the uniqueness of

each cluster. As seen in Table 10, the clusters differed significantly on all

construct level means. Thus each of the three clusters was distinct.

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Table 11 presented the ANOVA data for the study. The magnitude of the F

values from the analysis of variance performed on each dimension is another

indication o f how well the respective dimension discriminates between clusters.

The cluster analysis provided the location o f the respondents on the Y-axis.

We then needed to place the respondents on the X-axis. The X-axis was a measure

of object-oriented experience. Past research has used several approximations for

measuring software development experience. One method was to have the

researcher categorize the participant based on language usage (e.g. Detienne, 1995).

One problem with this method is the arbitrary nature of group assignment. For

example in the Detienne (1995) study, individuals were categorized as beginners

and experienced based on how “frequently” they used the software development

language. Scholtz and Wiedenbeck (1990) defined experienced programmers as

either professional programmers or advanced graduate students. Schenk, Vitalari,

and Davis (1998) defined experienced analysts based on supervisor performance

ratings. Shneiderman (1976) used a student sample and defined “advanced”

developers as graduate students or faculty.

Other studies used the number of years of an individual has developed

software as a measure of software development experience (e.g. Lee & Pennington,

1994; Manns & Nelson, 1996). For example in their study, Manns and Nelson

(1996) defined a professional programmer as one with “3-10 years of experience.”

Campbell, Brown, and DiBello (1992) used the term professional programmers to

describe a developer with at least five years professional experience.

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

There are a few studies that have attempted to use multiple factors to

determine an individual’s level of object-oriented experience. Harrel and McLean

(1985) determined a developer’s level of experience using a questionnaire that

elicited information on the individual’s years of formal training, years of

experience, and the number of programs written. Liu, Goetze, and Glynn (1992)

measured experience in terms of lifetime lines of code, most recent programming

experience (months ago), largest program (lines of code), largest number of weeks

spent writing a program, and the number of languages known. One limitation of

this study was the use of a student sample. Pennington (1987) measured:

programming languages known, number of programming courses taken, years as a

professional programmer, number of hours spent professionally programming

(coding, debugging and maintenance), if taught programming course. Drawing on

this work and personal observation, we believed that object-oriented experience

would be indicated by multiple factors. We collected information on the following

variables:

Age

Gender

Formal Education

Organizational Tenure

Job Tenure

Job Description

Industry

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Methods of learning software development

Years o f Procedural Experience

Number of Procedural Projects

Years object-oriented Experience

Number of object-oriented Projects

Number of software development languages used in job

Number of professional organizations member

Average length of projects

Average cost of projects

The only variables that had significant correlations with the construct level

factors (Basic, Object, System, Procedural) were the years of object-oriented

experience (0.538, p= .000) and number of object-oriented projects (.627, p = .000).

The correlation between the years of object-oriented experience and number

of object-oriented projects was .790 and is graphically represented in Figure 7.

While that correlation was high, the analysis needed to be conducted using both

variables. The Basic Level construct was linked primarily to the years of object-

oriented experience, the Object Level construct was linked with both years of

experience and number of object-oriented projects, and the System Level construct

was primarily linked with the number of object-oriented projects. Therefore we

conducted the analysis using years of object-oriented experience and number of

object-oriented projects separately as the X-axis.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Hypotheses

One way to analyze the learning process is through a graphical representation

of the data. We examined the learning curve to see where in the process software

developers were getting stuck in the transition from procedural to object-oriented

techniques. We wanted to measure object-oriented knowledge at different points in

the learning process. To do this we needed to determine the software developer’s

level o f object-oriented knowledge and their level of object-oriented experience.

The Software Development and Maintenance Approach instrument measured

variables that indicated the individual’s level of object-oriented knowledge, and

demographic information that indicated the individual’s level of object-oriented

experience. Therefore, the Y-axis represented the level of object-oriented

knowledge and the X-axis the amount of object-oriented experience.

Hypothesis 1

Hypothesis 1 stated, "'The learning curve for procedural software

development experts learning object-oriented techniques will include learning

plateaus. ” To address this hypothesis we first conducted a visual inspection of the

data using scatterplots. Scatterplots highlight the relationship between variables by

plotting the actual values along two axes. Scatterplots reveal relationships, such as

a curvilinear pattern, that descriptive statistics do not reveal. We created three sets

of graphs, one for each object-oriented construct (See Figures 8, 9 and 10). There

are two graphs per construct, the top one showing the object-oriented experience

time component on the X-axis, and the bottom showing the number o f object-

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

oriented projects on the X-axis. SPSS allows you to select an interpolation method

for connecting the data points in a scatterplot. Once the method is selected the

kernel and bandwidth must be set. The kernel determines the smoothness of the

curve. The kernel options (from most smooth to least smooth) are normal,

Epanechnikov and uniform. (For more information, see Simonoff, Jeffrey S.,

Smoothing Methods in Statistics, 1996, New York: Springer-Verlag.) The

bandwidth multiplier changes the amount of data that is included in each

calculation of a small part of the smoother. The multiplier can be adjusted from 0 to

10 to emphasize specific features of the plot that are of interest. The larger the

multiplier, the smoother the curve. The default size of the bandwidth is one. The fit

line in the graphs below is a smoother line (local linear regression) with a normal

kernel (default) and a bandwidth of one (default). The defaults were used because

they best represented the data without “over-smoothing”.

From the scatterplots in Figure 8, two plateaus can be seen in the top graph,

with “years of OO experience” on the X-axis. This indicates that for the Basic

Level factor (consisting of two variables) there are two plateaus or slowing points

in the learning across time. In the lower graph, with “number of object-oriented

projects” on the X-axis, only one plateau is seen. In Figure 9, one rather large

plateau occurred for the Object Level construct with both years and number of

projects on the X-axis. In Figure 10, two plateaus can be seen with both “years of

object-oriented experience" and “number of object-oriented projects” on the X-

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

axis. This indicates that for the System Level factor (consisting of 9 variables)

there are two plateaus in the learning.

The shape of the line was then statistically tested using bivarite linear and

nonlinear regression. We compared the “goodness of fit” for three regression

models, a linear, quadratic and curvilinear model. The comparison is commonly

made using the “r,” ”r and “Se” statistics. The “r” quantifies the degree to which

the predicted scores match up with the actual scores (Huck, 2000, p. 576). The “r ”

is the coefficient of determination, which indicates the proportion of variability in

the dependent variable that is “explained” by the independent variable (Huck, 2000,

p. 576). When measuring the strength of relationship between independent

variables the preferred measure is the r rather than r (Lewis-Beck, 1980). The

standard error (Se) is an estimate of the standard deviation of the slope estimate

(Lewis-Beck, 1980). The models used in the analysis were:

Model Equation

Linear Y = b0 + bl*x +e

Quadratic Y = b0 + bl*x2 + bl2*x + e

Curvilinear Y = b0 + bl *x + b01 *d l + b ll * dl * x + b02 * d2 + bl2 *

d2 * x + e

where b0-b02 were the y-intercept parameters, b l-bl2 were the slope parameters, c

is the constant, dl and d2 were variables used to distinguish the clusters, and x was

the independent variable (years of OO experience or number of OO projects). The

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

cluster variables (dl and d2) were assigned as follows: cluster I dl = 0, d2 = 0;

cluster 2 dl = I, d2 = 0; and cluster 3 dl=0, d2 = 1. For example, using the Basic

Level construct as the dependent variable, and “years ° f object-oriented

experience” as the independent variable, the equations would read:

Linear Basic Level =

2.591 + .107 * years of object-oriented experience + .211

Quadratic Basic Level =

2.467 + (-.007)*(years of object-oriented experience)2 + .183 *

years of object-oriented experience + .329

Curvilinear Basic Level =

3.431 + (-.266) * (years of object-oriented experience) + (-2.508) *

dl + (.350) * dl * (years of object-oriented experience) + .375 * d2

+ .277 * d2 * (years of object-oriented experience) + .860

Table 12 presents the “r2” information and Table 13 presents the standard

error (Se) information for the linear, quadratic and curvilinear models.

In the curvilinear regression the r2 was higher than the quadratic regression r2 and

the linear regression r2. This indicates that with the curvilinear model, more of the

variability in the dependent variable was being “explained” by the independent

variable than with the linear or quadratic models. In addition, the amount of error

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

(Se) was consistently lower in the curvilinear model than the linear or quadratic

models. Combining the scatterplot and the regression data indicates that a

curvilinear model better fits the data. As a result. Hypothesis 1 is supported.

Hypothesis 2

Hypothesis 2 stated, “Proactive interference is positively associated with

learning plateaus. ” Proactive interference occurs when previously learned

information interferes with the assimilation of new knowledge. In the case of

expert procedural software developers learning object-oriented techniques,

proactive interference occurs when an individual’s existing knowledge of a

procedural concept interferes with learning the object-oriented concept. This

interference can be assessed by comparing antagonistic concepts. For example, in

terms of tennis and racquetball the concept of “forehand” is antagonistic. Someone

who is thinking from the tennis mindset will conceptualize the forehand as a swing

dominated by the shoulder, and from the racquetball mindset will.conceptualize the

forehand as a swing dominated by the wrist. Applying the theory of proactive

interference to the Software Development and Maintenance Approach instrument,

if an individual scores high on an object-oriented concept and low on the

antagonistic procedural concept, then she is thinking in the object-oriented mindset.

If the individual scores similarly on both the object-oriented and procedural

concepts then she is experiencing confusion and proactive interference. When we

analyzed the sample, there were individuals experiencing “confusion”. We

observed a pattern to this confusion across the sample. As the level of object-

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

oriented experience (as expressed by years of object-oriented experience and

number of object-oriented projects) increased the response pattern changed.

For example, Table 14 shows the concepts of “class” and “subroutine” as

antagonistic. As an individual’s level of object-oriented experience increases the

response to the “class” statements increase (l=strongly disagree to 5=strongly

agree). In contrast, as the individual’s level of object-oriented experience increases

the response to the subroutine statements decreases. Looking at the “class” concept

there was a steady increase in the level of response for response choices 1.00 to

3.00. This coincides with the increase in the years of object-oriented experience

and number of object-oriented projects. As the response choice moves from 3.00 to

3.33 the object-oriented experience level makes a drastic increase from 2 to 4 years

and the number of object-oriented projects jumps from 1 to 3 projects. After that

point, the response choices and object-oriented experience steadily increased.

Looking at the “subroutine” concept there was a steady decline for response

choices 1.00 to 2.00. This coincides with the increase in the years of object-

oriented experience and number of object-oriented projects. As the response choice

moves from 2.50 to 4.00 the object-oriented experience level and the number of

object-oriented projects hovers around 3. After that point, the response choices and

object-oriented experience become steady again.

Similar results were found for the following concepts:

Procedural

Data Model

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Interaction

Monolithic

Functional Decomposition

Functions

Object-Oriented

Object Model

Interaction

Layer

Noun-Verb Analysis

Things as Objects

Figures 11 -16 graphically represent the interference between the respective

concepts for both years of object-oriented experience (top graph) and number of

object-oriented projects (lower graph). The crossing lines of the graph demonstrate

the interference. From the graphs (Figures 11-16), it can be seen that the

knowledge of the procedural concepts interferes or stagnates the learning of the

object-oriented concepts. As a result, Hypothesis 2 is supported.

Hypothesis 3

Hypothesis three stated, “Learning plateau(s) will occur at certain levels o f

object-oriented experience. " Looking at the graphs we see that the plateaus occur

at different locations depending on the construct. Plateaus occur on the Basic

Level construct when compared to the years of object-oriented experience and the

number of object-oriented projects. Two plateaus can be observed on the Basic

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Level construct versus years of object-oriented experience graph (see Figure 8).

One longer plateau can be seen on the Basic Level construct versus number of

object-oriented projects graph (see Figure 8).

The reason the first plateau occurs on the Basic Level construct versus years

o f object-oriented experience graph was because of the proactive interference

between “function” and “things as objects”. See Figure 17A. Based on the

detailed top graph it can be seen that this interference occurs between 1.25 and 3.67

years of object-oriented experience. The crossing of the two lines and the proximity

of the lines during the time period 1.25 to 3.67 years of object-oriented experience

demonstrates the interference. Based on the detailed bottom graph it can be seen

that interference occurs between 2 and just over 6 object-oriented projects. The

individual moves out of the plateau when the interference was no longer present.

The reason the second plateau occurs on the Basic Level construct was

because of the proactive interference of “function” and “converting things into

objects”. See Figure 17B. Based on the graph it can be seen that this interference

occurs between 5.25 and 7.5 years of object-oriented experience.

Three plateaus occur on the System level factor based on the number of

object-oriented projects experienced. See Figure 18. A plateau occurs between

2.00 and 3.25 projects, another plateau occurs between 4.25 and 5.50 projects, and

the final plateau occurs between 7.25 and 8.00 projects.

The reason the first two plateaus occur on the System construct was because

o f the proactive interference between the Procedural and System Level concepts.

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

One of those interference points was between “abstraction” and “data

modification.” The plateaus correspond to the solid line decreasing while the

dashed line was above it. The periods of learning correspond to increases in the

solid line. These are periods in which an individual’s knowledge of the object-

oriented mindset is increasing. Based on the graph it can be seen that this

interference occurs between 2.00 and 3.25 object-oriented projects and again from

4.25 to 5.50 projects. The proactive interference also occurs between the “object-

oriented interaction” and “input-process-output,” and “object model” and “data

model” concepts. See Figures 19 and 20.

As the software developer makes the transition to object-oriented techniques

he or she experiences periods of learning and periods of stagnation. The periods of

learning are represented in the graph as the positively sloped portion o f the curve.

The periods of stagnation are represented as plateaus. The proactive interference

can also be represented as the intersection of antagonistic concepts. As the

previously learned procedural information interferes with the assimilation of the

new information the plateaus occur. When the individual is no longer confused by

the procedural concept the interference ceases. At that time the plateau ends and

the individual continues learning as demonstrated by the positive sloping learning

curve. As a result, Hypothesis 3 is supported.

Hypothesis 4

Hypothesis four stated, “Learning plateau(s) will cluster around certain

object-oriented concepts." When analyzing this hypothesis with regard to the

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

years of object-oriented experience, there were twelve concepts that exhibited

multiple plateaus. Of these two were from the Basic Level construct, three from

the Object Level, and seven from the System Level construct. See Table 15.

The plateaus occurred at the same level of years of experience for all o f the

constructs with two plateaus. For example, Figure 21 reveals two plateaus for the

“converting things into objects” construct when measured against years of object-

oriented experience. If you overlaid the graphs of the other eleven multiple plateau

concepts the plateaus would occur at approximately the same location on the X-

axis (years of OO experience).

When analyzing this hypothesis with regard to the number of object-oriented

projects, there were ten concepts that exhibited multiple plateaus. Of these one was

from the Basic Level construct, three from the Object Level, and six from the

System Level construct. See Table 16. The plateaus for “abstraction” and

“converting things into objects” occurred at the same location along the x-axis. For

example, Figure 22 shows two plateaus for the “abstraction” construct measured

against the number of object-oriented projects. If the graph of the “converting

things into objects” concept was overlaid, the plateaus would occur at

approximately the same location on the X-axis (number of OO projects).

The plateaus for “inheritance,” “interaction,” “message passing,” “oo

development,” “relationships,” and “components,” occurred at the same location.

Figure 23 shows two plateaus for the “message passing” construct when measured

against the number of object-oriented projects. If you overlaid the graphs o f the

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

other five multiple plateau concepts the plateaus would occur at approximately the

same location on the X-axis (number of OO projects).

Multiple plateaus on both X-axis (years and projects) occurred for seven

concepts: “abstraction,” “components,” “converting things into objects,”

“interaction,” “layer,” “message passing,” and “noun-verb analysis.” As a result,

Hypothesis 4 is supported.

“Don’t Know” Analysis

As detailed previously, because the instrument was anchored in the object-

oriented perspective, a “don’t know” response choice was included. This option

was included to give respondents who were not anchored in the object-oriented

perspective an option to reflect their lack of knowledge (Schuman & Presser, 1981,

p. 170). We felt that capturing an admitted lack of knowledge was as important as

capturing the level of knowledge. When a respondent selected “Don’t Know, no

knowledge or experience in this area” he or she was not just stating that they were

neutral about the topic, but specifically stating they had no knowledge of the topic.

If he or she was neutral about the topic, they would have most likely selected the

“neither agree nor disagree” option.

The “don’t know” responses were not included in the primary analysis. A

separate SPSS file was created from the original data so as to analyze the “don’t

know” response choice. This file was transformed to reflect the comparison of

answering “know” versus “don’t know”. The “don’t know” response was coded 1

and the “know” (any other response choice) was coded a 0. The data was examined

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

with regard to the frequency of the “Don’t Know” response. The largest percentage

of “Don’t Know” responses (over 20%) occurred at the “Object Level” and

“System Level” constructs. See Table 17.

It can be seen in Figures 24 through 27 that the “don’t know” scatterplots are

the reverse image of the full data scatterplots for the constructs. The plateaus occur

at the same points on the X-axis in the graph. For example, in the Basic Level

versus years of object-oriented experience graph (Figure 24, top graph) there was a

plateau between 1.5 and 3.5 years of object-oriented experience. There was a

second plateau between 6 and 10 years of experience. Looking at Figure 27, you

will see that the plateaus coincide with the Basic Level versus years of object-

oriented experience graph for the primary analysis (same as the lower graph of

Figure 8). The “don’t know” analysis demonstrates proactive interference from

another angle. Software developers that selected the “don’t know” response were

experiencing proactive interference (as demonstrated by plateaus) similar to the

developers that selected a “know” response. This affirms the existence and

location of the plateaus.

Summary of Chapter Four

This chapter discussed the data analysis procedure used and reported the

findings of this study. The first section detailed the two primary data analysis

methods used: cluster analysis and factor analysis. Because we wanted to find

groups within the data, cluster analysis was the primary method of data analysis.

The clusters were formed based on responses to the software development and

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

maintenance approach items. After the respondents were placed into a cluster, then

the membership of the cluster was analyzed. We looked for correlations or patterns

between the demographics of the groups and how they answered the questions.

This information was then used to describe the group’s movement through

the learning process. Combining the respondent’s object-oriented knowledge with

their demographic information allowed us to graphically represent the transition

from procedural to object-oriented software development. The level of object-

oriented knowledge placed the cluster on the Y-axis and the demographic

information determined their location on the X-axis. The second section addressed

the hypotheses and reported the findings from the study. Factor analysis and

regression were used to support the cluster analysis and the hypotheses. All four of

the hypothesized relationships were supported. Thus, the learning curve for

procedural software development experts learning object-oriented techniques

included learning plateaus. Also, proactive interference was positively associated

with those learning plateaus. And, lastly, the plateaus occurred at certain levels of

object-oriented experience and clustered around certain object-oriented concepts.

See Table 18 for a summary of the findings for each hypothesis. The next chapter

discusses these results in greater detail.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CHAPTER FIVE

Discussion

This study asked the questions, “Why is it difficult for procedural experts to

learn object-oriented development? And “Where in the learning process are

developers experiencing difficulty?” Our findings indicate that proactive

interference was one factor contributing to the difficulty in making the transition.

An individual’s experience in procedural software development interferes with

learning object-oriented techniques. Our findings also indicate that software

developers experience difficulty at several points in the learning process.

Other interesting findings were uncovered in the data analysis process. One

of the most significant findings was the identification of the object-oriented

concepts on which learners experience proactive interference. Another finding was

the development of two distinct schemes. The data from Phase I support an expert

classification scheme that reflects a software developer’s thinking once he or she is

an expert. In contrast, the data from Phase III support a learning conceptual

scheme that reflects the learning process as software developers transition to

object-oriented techniques. Another interesting finding was the discovery of three

clusters in the data. The clusters could be categorized as novice object-oriented

developers, transitional developers and experienced object-oriented developers.

This chapter details the research findings, theoretical and managerial implications

and limitations of this study. Future directions and a summary are provided at the

end of the chapter.

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Research Findings

Classification Scheme

The goal of Phase I was to identify the concepts associated with procedural

and object-oriented software development from an expert’s perspective. Interviews

were conducted with expert procedural and object-oriented software developers to

gather the relevant concepts. An expert classification scheme was developed from

the interviews and provided seven constructs for object-oriented development and

six for procedural development. The expert classification scheme identified the

conceptual end points of the learning process and reflected the states (design,

execution) and the components (characteristics, relationships) of software

development.

The Phase III data identified a learning conceptual scheme containing three

object-oriented and one procedural construct. The goal of Phase III was to

document the learning process as developers transition from procedural to object-

oriented techniques. We wanted to elicit the progression of understanding and

identify where developers were experiencing difficulty making the transition. The

learning conceptual scheme developed in Phase III was based on data from expert

procedural software developers learning object-oriented techniques. These

individuals were at various stages in the learning process and thus their learning

conceptual scheme reflected the process. The Phase m data produced a learning

conceptual scheme that was grounded in the progression of understanding.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Each construct in the Phase m learning conceptual scheme reflected a stage

of learning. The Basic Level construct can characterized as introductory concepts,

the first ideas that are introduced to individuals as they leam object-oriented

techniques. They are also the commonly used “buzzwords” that individuals could

use without really understanding the underlying concepts. The concepts from the

Object Level construct are related to an early stage of software development

learning. These concepts primarily focus on the development of an object and are

more micro-focused. The concepts from the “System Level” construct are related

to a later stage in the software development learning process. These concepts focus

on how the objects function within the larger system. Refer to Tables 5 and 8 for

the expert classification and learning conceptual schemes.

The learning conceptual scheme reflects the thought processes of software

developers as they leam object-oriented techniques. The learning conceptual

scheme helps pinpoint what concepts are more difficult for the learners. For

example, from this scheme we can see that the individuals who understood the

concept of “abstraction” were more experienced object-oriented developers,

whereas most individuals understood the concept o f ‘Things as objects” regardless

of their experience. This conceptual scheme reflects the progression of learning.

As a developer is learning object-oriented techniques he or she generally connects

the object-oriented concepts starting with the “Basic Level” concepts and

progressing through to the “System Level” concepts.

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

While the learning conceptual scheme is of primary importance to this

research project, the expert classification scheme also contributes to our

understanding of expertise and Information Systems. We can utilize both of the

schemes to paint a more complete picture of the learning process. The expert

classification scheme identified the object-oriented concepts essential for a deep

level of understanding and proficiency. That information was used to create the

Software Development and Maintenance Approach instrument. The data from the

instrument produced the learning conceptual scheme. The learning conceptual

scheme identified where software developers experience difficulty in the learning

process. This information can be used to improve the learning process and increase

comprehension. Therefore, both conceptual schemes contribute to our

understanding of software development learning and expertise.

Cluster Analysis

As previously stated, three clusters were revealed in the data. Table 9

presented the mean scores on the object-oriented and procedural constructs for each

cluster. The respondents in cluster 1 were procedural thinkers. They answered the

procedural questions significantly higher than they answered the object-oriented

questions. When they develop software they develop from the procedural mindset,

thinking procedurally as opposed to object-oriented. Looking at the demographic

information associated with cluster 1, it was not surprising in light of their

performance. The average years of object-oriented experience was slightly less

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

than 2 years (1.75) and the number of object-oriented projects they had participated

in was just under I (.952).

The respondents in cluster 2 were in transition. When looking at the mean

scores, they answered questions in the middle. When the actual responses are

analyzed very few respondents selected “neither agree nor disagree” (choice 3). If

the item had two questions, most respondents selected 4 for one item and 2 for the

other. This indicates not that they were indifferent to the concept, but confused by

the concept and did not answer consistently. The fluctuating scores indicate the

confusion. The respondents mean scores ended up close to neutral (3.00) on the

Basic and Object Level object-oriented constructs, disagreed with the System Level

construct, and slightly agreed with the procedural construct. These individuals are

beginning to internalize the Basic and Object Level constructs, but not the System

Level constructs. They are in the process of making the transition to object-

oriented techniques. When looking at their demographics, the respondents in

Group 2 have a few years of object-oriented experience (2.77) and a few projects

(2.33) under their belt.

The respondents in cluster 3 were object-oriented thinkers. They answered

the object-oriented questions significantly higher than the procedural questions.

When the cluster 3 respondents develop software they develop from the object-

oriented mindset as opposed to procedurally. Looking at the demographic

information associated with cluster 3, the average years of object-oriented

experience was slightly over 5 years (5.086) and the number o f object-oriented

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

projects they had participated in was about 4.5 (4.484). Cluster 3 participants were

experienced in object-oriented software development techniques and use that

knowledge to develop software.

Hypotheses

The scatterplot and regression analysis performed supports the theory that the

learning curves for procedural software development experts learning object-

oriented techniques exhibit plateaus. At the construct level, plateaus were observed

for all three constructs. Multiple plateaus were observed on the Basic and System

Level constructs. The plateaus on the Basic Level were most pronounced when

viewed with respect to the individual’s years of object-oriented experience. The

plateaus on the Object Level construct were mixed. The plateaus on the System

Level were most pronounced when viewed with respect to the individual’s quantity

of object-oriented projects. This indicates that as an individual moves through the

learning process the “time” aspect becomes less predictive than the number of

experiences.

On the Basic Level construct two plateaus occurred. One plateau occurred at

the beginning of the learning process (1.5-3.5 years of experience) and another

toward the end of the process (6.0-8.0 years of experience). This makes sense

because as a software developer leams object-oriented techniques he or she

becomes comfortable with the surface level concept of an object and can use it in

their applications. As the developer deepens his or her understanding of the

“object” the slope of the learning curve increases. The learning stalls again as the

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

developer struggles with the complexity of the object as it is used within the larger

context.

On the System Level construct three plateaus occurred. These plateaus

occurred with regard to the number of object-oriented projects the developer had

completed. The first plateau occurred between 2 and 3 projects, the second

between 4 and 5 and the third between 7 and 8 projects. The first 2 plateaus

coincide with the cluster breakdowns. Cluster 2 has an average number of object-

oriented projects of 2.33. Cluster 3 has an average number of object-oriented

projects at 4.48. One possible explanation for this finding is that as individuals

move to a new phase in the learning they experience a plateau. Once they break the

plateau (the interference) they move up the curve and into the next cluster.

Not only do these plateaus occur at specific times, they occur around specific

concepts. At the construct level the Basic Level construct exhibited multiple

plateaus with regard to the years of object-oriented experience, and a single plateau

with regard to number of projects. The Object Level construct exhibited a single

plateau with regard to both years of experience and number of projects. The

System Level construct exhibited multiple plateaus with regard to the number of

projects. Again, the plateaus and thus the learning appear to be linked with the

time component early in the learning process and with the practice component later

in the learning process.

Another finding is the location of the single and multiple plateaus at the

concept level. The concepts that contained multiple and single plateaus are listed in

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Table 19. Looking at the table the things as objects, collaboration, method,

information hiding, and object model concepts revealed multiple plateaus when

using years of OO experience as the X-axis. The inheritance, OO development,

and relationship concepts revealed multiple plateaus when using number of OO

projects as the X-axis. The converting things into objects, noun-verb analysis,

abstraction, components, interaction, layer and message passing concepts revealed

multiple plateaus when using either X-axis (years or projects). Of those seven

concepts, 5 are members of the System Level construct. Thus when learning

object-oriented techniques it is at the System Level where learners experience the

largest proportion of interference as demonstrated by multiple plateaus in the

learning curve.

When looking at the location of the single plateaus the pattern is reversed.

The attribute, class, instantiation, OO development, information hiding, object

model and relationship concepts revealed single plateaus when using years of OO

experience as the X-axis. The things as objects and polymorphism concepts

revealed single plateaus when using the number of OO projects as the X-axis. The

encapsulation concept was the only one to reveal a single plateau when using either

X-axis (years or projects). Referring to Table 19 the majority of the multiple

plateaus occurred on concepts included in the System Level construct, and the

majority of the single plateaus occurred on concepts included in the Object Level

construct. In fact, all of the concepts that had only single plateaus were concepts

included in the Object Level construct (attribute, class, encapsulation, instantiation,

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

polymorphism). The other two concepts that had single plateaus had multiple

plateaus on the other X-axis. The things as objects concept (from the Basic Level

construct) had multiple plateaus when using years of OO experience as the X-axis,

and a single plateau when using the number of OO projects as the X-axis. The

relationship concept (from the System Level construct) had multiple plateaus when

using number of OO projects as the X-axis, and a single plateau when using the

years of OO experience as the X-axis. This finding is consistent with our assertion

that the plateaus and thus the learning appear to be linked with the time component

early in the learning process (Basic Level construct) and with the practice

component later in the learning process (System Level construct).

As previously stated, during the learning process the learner may attempt to

map knowledge from familiar domains (procedural software development mindset) to

the new domain (object-oriented development mindset). When an unfamiliar event is

introduced, the learner activates the schema that is perceived to most closely match

the event. The new information is compared against existing schema and either

refines the existing knowledge or creates a new schema. With the introduction of

object-oriented methods, the learner may activate the procedural software

development schema. Unfortunately, much of the new information is inconsistent

with the active schema. Eventually a new schema will be created, but during the

learning process the learner attempts to map the new knowledge onto the old

schema. This causes the learner to create an incorrect analogy and experience

proactive interference.

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Proactive interference is reflected in the scores of the individual on the

antagonistic concepts. If an individual scores high on an object-oriented concept

and low on the antagonistic procedural concept, then he or she is thinking in the

object-oriented mindset. If the individual scores similarly (or erratically) on both

the object-oriented and procedural concepts then he or she is experiencing

confusion and proactive interference. A graphical analysis was used to discover

which concepts were incorrectly mapping to each other. We used a two variable

line graph to observe where the lines of the two concepts cross. The crossing

points demonstrate the incorrect mapping and proactive interference. See Figure 16

for an example.

In this research five of the concepts contained only single plateaus. All of the

concepts with only single plateaus were elements of the Object Level construct.

For the object-oriented attribute concept the data suggest that respondents were

mapping to the procedural function concept. For the class concept the data suggest

that respondents were mapping to the subroutine concept. For the encapsulation

concept the data suggest that respondents were mapping to the functional

decomposition concept. For the instantiation concept the data suggest that

respondents were mapping to the function concept. For the polymorphism concept

the data suggest that respondents were mapping to the data modification and

functional decomposition concepts. Thus the respondents were experiencing

proactive interference once during the learning process with regard to the five

Object Level concepts listed. The data suggest that within the Object Level

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

construct the two primary causes of interference for these concepts was the function

and functional decomposition concepts.

Referring to Table 19, the majority of the concepts that contained multiple

plateaus were System Level concepts (eight of the fifteen). It is interesting, but not

surprising, that the majority of the proactive interference occurred at the System

Level construct. Eight of the nine concepts included in the System Level construct

experienced multiple plateaus and proactive interference. That data suggest that

respondents were mapping the procedural function concept to both the converting

things into objects and the things as objects concepts. Since the Basic Level

construct is comprised of only these two concepts we can state that the interference

experienced when learning the Basic Level constructs is related to the functional

nature of the procedural mindset.

Within the Object Level construct the data also suggest that respondents were

thinking more functionally. Respondents mapped the procedural function concept

to the collaboration, inheritance, and method concepts. For the noun-verb analysis

concept the data suggest that respondents were mapping to the functional

decomposition concept. For the OO development concept the data suggest that

respondents were mapping to the data model, functional decomposition, and data

modification concepts. Again, we can see that the interference experienced when

learning the Object Level constructs is related to the functional nature of the

procedural mindset.

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

The interference experienced when learning the System Level constructs is

located in a different portion of the procedural mindset. For the abstraction concept

the data suggest that respondents were mapping to the data modification concept.

Respondents mapped the procedural input-process-output concept to the

components, information hiding and relationship concepts. For the object-oriented

interaction concept the data suggest that respondents were mapping to the

procedural interaction concept. For the layer concept the data suggest that

respondents were mapping to the monolithic concept. For the message passing

concept the data suggest that respondents were mapping to the linear form and

subroutine concepts. For the object model concept the data suggest that

respondents were mapping to the data model concept. From these results we can

see that the interference experienced when learning the System Level concepts is

related more to the movement of data within the system.

The Object Level construct focuses on the development and functioning of an

object. Another phrase for that focus is development in the “small,” which

emphasizes the creation of individual components for an application. The concepts

in the Object Level construct address the smallest parts o f the system where you

create individual classes and methods for an application. From the data we can see

that within the Object Level construct the proactive interference primarily arises

from the functional nature of the procedural mindset. This is consistent with the

Object Level construct’s emphasis on development at the object level. So when

individuals are learning the Object Level concepts they are experiencing

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

interference from the procedural emphasis on “functions” in conflict with the

object-oriented emphasis on “objects”.

In contrast to the Object Level construct’s emphasis on the individual object,

the System Level construct focuses on how objects function within the larger

system. Another phrase for that focus is development in the “large,” which

emphasizes how components are linked together. The concepts in this construct

address finding, modifying, and assembling the classes and methods that you need to

support an application as well as the interactions with the system. From the data we

can see that within the System Level construct the proactive interference primarily

arises from the procedural emphasis on movement of the data throughout the system

versus the object-oriented emphasis on connections between objects within the

system. Thus learners are experiencing proactive interference from different sources

within the procedural software development mindset. They experience functionally

motivated proactive interference from the procedural mindset during the learning of

the development of objects (Object Level concepts). Whereas they experience more

interaction oriented proactive interference when learning how the objects fit into the

bigger system.

Implications

The purpose of this study was to understand the learning process experienced

by expert procedural developers transitioning to object-oriented techniques and

how previous knowledge interferes with the process. To date this topic has not

been significantly addressed in the IS literature. There has been little or no success

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

in developing learning theory or explaining the difficulties software developers

experience as they shift their mindset. One of the strengths of this study was its

approach to understanding software expertise and learning. This study has taken an

evocative approach to examining learning and mindshifts that is unlike any study

previously conducted. This is one of the first studies to develop theories of

software development ieaming and empirically test those theories.

A contribution of this study is the identification of the learning plateaus. This

study identified where software developers are experiencing difficulty making the

transition to object-oriented techniques. We used the learning plateaus to identify

the concepts around which learners experience the most proactive interference. We

identified the places (concepts) where we can decrease people’s incorrect

mappings. Those concepts are: abstraction, collaboration, components, converting

things into objects, inheritance, information hiding, interaction, layer, message

passing, method, noun-verb analysis, OO development, object model, relationship,

things as objects. Now that the concepts have been identified, we can re-focus our

training to ease the difficulty with certain object-oriented concepts (e.g.

interaction). Learning will not just be a factor of years of object-oriented

experience and/or the number of object-oriented projects a developer has, but can

be enhanced by targeting the object-oriented concepts identified in this study.

Another contribution of this study is the learning theory that was evoked

from the data. Cognitive models of both procedural and object-oriented

development expertise were developed. The models identify both the concepts

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

inherent in each software development mindset and the structure of those concepts

into constructs. These models of expert software developer cognition will add to

our understanding of expertise, software development and cognition.

This study also contributes to the extension of qualitative methods in the IS

research environment. The aim of qualitative inquiry is to develop a body of

knowledge that describes the individual case (Lincoln & Guba, 1985). Qualitative

methods like the method used in this study are especially useful because they are

able to deal with the unstructured data sets found in exploratory settings. As the

qualitative data is analyzed and interpreted, theories emerge from the data.

However, qualitative methods are not appropriate to test emergent theory.

Quantitative methods may be employed at this stage to extend the existing body of

knowledge in the form of generalizations. To accomplish this the theory must be

transformed into testable hypotheses and then operationalized into measurable

constructs. Once this transformation is complete, the theory can be tested using

quantitative methods. This study used revealed causal mapping successfully to

develop theory. Once the theory was developed, cluster analysis and bivariate

regression were used to test the theory. Similar techniques may be used in

examining other important issues in the IS discipline that require a multimethod

approach.

In addition to theoretical implications, several managerial implications can be

drawn from this study. The first implication is on the training process. Limitations

of knowledge organization, representation and application are major constraints for

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

the software developer. A way to overcome these constraints is to acquire

expertise. As this study indicates, under the current training conditions it takes

many years and experiences in object-oriented techniques to gamer expertise.

Unfortunately, organizations cannot wait five years to develop object-oriented

experts. They need object-oriented software developers and they need them now!

The findings from this research study can aid organizations in meeting their need

for immediate object-oriented software developers. By putting these findings into

practice we can have an immediate impact on both academia and the software

development industry.

From an academic perspective, by incorporating these findings into our

software development classes we can send students into the workforce with a

greater grasp of the object-oriented mindset. They will be able to function within a

professional environment with an understanding not just of development of an

object (programming in the small), but also how that object fits into an entire

system (programming in the large). From an industry perspective, by modifying

training to emphasize the concepts that have proactive interference we can decrease

the length of the plateaus. For example, we know that abstraction and components

are two o f the object-oriented concepts on which individuals experience proactive

interference. By breaking down the existing procedural schema and strategically

emphasizing the antagonistic object-oriented concepts in the training process we

can shorten the learning process. By shortening the learning process we will create

software developers that have more expertise in less time.

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Another managerial implication is the Software Development and

Maintenance Approach (SDMA) instrument. The instrument measured from what

mindset an individual is developing and/or maintaining software (procedurally,

object-oriented, or a mixture). A graph created from the responses demonstrated

the location o f individuals along the learning curve. As expected individual

learning difficulties clustered around a few concepts with regard to object-oriented

techniques. It is quite conceivable that proactive interference might be diminished

if proper guidance could be given during the learning process (Travers, 1963:287).

This study identified the concepts that individuals experienced the most difficulty

in learning. These “more difficult” topics may be better addressed by modifying

object-oriented instructional design.

For example, we can provide training exercises to break down the procedural

schemas associated with the antagonistic topics and open the learners to new

information. Training can be modified to allow more discussion and practice time

on the concepts that individuals experience the most proactive interference.

Another change might be to create software development assignments that focus on

utilizing the concepts identified as having high proactive interference. Larger scale

projects could be introduced that would include the utilization of the System Level

constructs. By using the information in this study we can make training faster and

more productive, shorten the learning process, and ease the learners’ frustrations

when making the transition to object-oriented techniques. This can lead to a more

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

effective and efficient learning process and more and better-trained object-oriented

developers.

Another application of this instrument could be to measure the level and type

of development expertise within an organization. Individual as well as

departmental expertise could be measured using the instrument. The results of this

measurement would identify current development expertise levels and aid

organizations in resource allocation and planning.

This research has significant implications for managers because IS personnel

are continuously required to make shifts in their mindset. We are using the

mindshift from procedural to object-oriented software development as an example.

The methods used in this model have the potential to be relevant for other

mindshifts. When a shift occurs, experts under the previous mindset will need to

learn the new information. An understanding of how previous knowledge

interferes during a mindset change will aid instructional design, and facilitate

learning.

Limitations

The first limitation deals with external validity. Software development

learning theory has not been previously defined within the IS domain. Because of

this, the results of this study need to be replicated before claims o f generalizability

can be made. Threats to external validity were minimized somewhat in this study

by the variety of organizations and industries participating. However, we recognize

that the ability to generalize these findings to all software developers and

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

organizations may be limited due to self-selection bias, a non-random sample, and

the use of an online/email data collection method.

Another limitation is the study design. This study was a cross-sectional study

designed to approximate a longitudinal field study. Advances to research would be

made and knowledge would be gained from taking a longitudinal approach to

examining the learning process over time for specific individuals. While this

would contribute to the field, the reality is that conducting a longitudinal study is

unworkable. Following any one group of software developers for an extended

period of time given current IS job market volatility is virtually impossible

(Gerencher, 1999; Goodner, 2000).

One limitation of this study was the selection of cluster analysis as the

method of statistical analysis. This method is not supported by extensive body of

statistical reasoning (Aldenderfer & Blashfield, 1984, p. 14). This is a primarily

exploratory method and thus generalizations should be made with care. One

limitation of cluster analysis is that different clustering methods can generate

different solutions to the same data set. This risk was minimized by the use of

multiple clustering methods. With multiple clustering methods the data were

analyzed and clustered from two perspectives (Wards hierarchical and Ar-means).

One alternative explanation could be that the anticipated learning curve

(Figure 4) is the natural learning process for object-oriented techniques, and not

caused by proactive interference. This explanation could have been controlled for

by including individuals with only object-oriented experience (no previous

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

procedural experience). In analyzing their learning curves if there are no plateaus,

the plateaus are different, or the plateaus are in different locations along the curve

than the rest of the population, then the learning curve in Figure 4 is not the natural

learning process for object-oriented techniques. This would confirm the presence

of proactive interference and strengthen the study. Unfortunately, with a field

study and voluntary respondents, it was not possible at this time to find object-

oriented software developers with no procedural experience. In addition, it is

highly unlikely that we could find professional developers with only object-

oriented experience. Object-oriented techniques are too new to have individuals

out in the field with no previous procedural experience. The only respondents

available would be those straight out of college, and this population would not meet

the study criteria due to their lack of real world experience.

Another alternative explanation is that object-oriented software development

is more difficult to leam because it is more complex. It is more complex because

there are more concepts to leam with object-oriented techniques than with

procedural techniques. If the difficulties in making the transition from procedural

to object-oriented software development were a function of the number of concepts

only, then we would not see the plateaus in the learning curve. The findings

indicated that the learning curve for procedural experts transitioning to object-

oriented techniques includes plateaus and that the plateaus are a graphical

manifestation of proactive interference. It is the experts’ knowledge of the

procedural concepts that is interfering with the learning of the object-oriented

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

concepts. It is the interference that makes the transition so difficult, not the

complexity of the mindset.

Future Research

One of the first avenues for fixture research is replication. Due to the

limitations listed in the previous section, a replication of this study would be useful.

Another avenue for research from the limitations of this study would be to find

participants who are object-oriented developers with no procedural experience. An

analysis of their learning curves would not only be interesting but also affirm or

rebut the finding of this research.

The overarching goal of this research program is to answer the question,

“How can organizations ease the difficulties involved in revolutionary mindshifts?”

Past research has identified that expert procedural software developers have

difficulty making the transition to object-oriented methods. This study focused on

understanding the difficulties. We answered the why and where questions. Now

that we understand the problem, the next logical step is to solve the problem. How

can organizations ease the difficulties involved when shifting mindsets? Future

research could explore modifications to present training methods. Modifications

can be made to current instructional design and tested in an experimental setting.

Long-term future research could generalize the principles found in this study

to mindshifts in other domains. The principles identified in study may be

generalized to other domains such as the shift from mainframe to client/server

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

technology. Shifts in mindset occur not only in the software development domain,

but also in IS and throughout organizations.

Summary of Chapter Five

At the beginning of this document was a quote, “You must unlearn what you

have learned.” As we have seen in this study that is not just a clever quote but also

a maxim for making the transition to object-oriented techniques. Past research told

us that making the transition to object-oriented techniques was difficult. This study

asked the questions, “ Why is it difficult for procedural experts to leam object-

oriented development? And Where in the learning process are developers

experiencing difficulty?” Our findings indicate that proactive interference is one

factor contributing to the difficulty in making the transition. An individual's

experience in procedural software development does impinge on the learning of

object-oriented techniques. Our findings indicate that software developers

experience difficulty at several points in the learning process. Proactive

interference is the strongest during the processes of understanding object-oriented

development within a larger system.

The successful adoption of a technology is dependent on enough people

learning and using the technology successfully (Markus, 1990; Pool, 1997). An

understanding of the learning processes involved in transition from procedural to

object-oriented techniques could shorten the object-oriented learning process,

increase software quality, perhaps decrease the frustration level of students during

their learning process, and ultimately increase the use of object-oriented

too

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

development techniques. Understanding the difficulties involved in learning a new

software development mindset will provide principles for more effective and

efficient instruction and/or retraining of developers. From a theoretical perspective,

questions of knowledge transfer and cognitive interference are important to our

understanding of learning and should continue to be explored.

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

1

Osgood’s Transfer Surface

Rtipam* Similarity

Stimulus Similarity

i
Figure 1. The Osgood Transfer Surface.

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

CURVE A
Hypothetical Learning Curve

Standard
Positively Accelerated

so

Experience

CURVEB
Hypothetical Learning Curve

Standard
Negatively Accelerated

Experience

Figure 2. Hypothetical Learning Curves.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Hypothetical Learning Curve for
Complex Processes

ss

Experience

Figure 3. Hypothetical Learning Curve - Complex Processes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Hypothetical Learning Curve
With Learning Plateaus

£o

Experience

Figure 4. Hypothetical Learning Curve With Plateaus.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Object-Oriented Concepts Point of Redundancy

P ro c e d u ra l C o n c e p ts P o in t o f R e d u n d a n c y

Figure 5. Point O f Redundancy For Procedural And Object-Oriented RCMs.

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

C luster C enters By C onstruc t

5

4.5 - O 4.433
4 .

A 3 858 A 3.822 A 3.827
3.5 J ♦ 3.473

3 .

2.5 -

♦ 2.997
♦ 2.703 A 2.635

□ Cluster 1
♦ Cluster 2

2 - ♦ 2.13 a Cluster 3

1.5 -

1 .
□ 1.299 O 1-37

0 1.068

0.5 .

0

Basic Object System Procedural

Figure 6. K-Means Cluster Analysis Centers.

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

T3
<P 8 0 0 " O
CBa
*5 o

6.00— C O • ' C O
10
O c o c o c

2 4oo« c o o oo c o ac c o a.
§ O C O C C E O O O O c
«fc»o
>, 2.00- c O' CC O O
»
C OD/aDC CO CD O a On3
^ 0.00- c c o

i r r i t
0.00 2.50 5.00 7.50 10.00

calculated years of oo exp

Figure 7. Correlation Graph, Years versus Number of Projects.

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

db c

0
4 00 - CDP c w

3 °
^ c :

a ‘Oism '3) Sc c
§ 3 00 - 0__ ci 0
a 0

i 0 >s S?
9 2.00 “ 0 3 c - -
o
9 c

^ §m c cCD T 00 - GO O

0 00 - ' -I I I I
0 00 5 00 TO oo tsoo

Years of OO Experience

&

X

4 00 - C 30 s «
s 0 s s :e J c
§ 300 - 2
u e o•5 ? .1 s ■ o
2 2-00 - ■* p o
0 o c 3

1 §
® 100 - o c c

0 00 - 0I I I I I
a 00 2.00 4 00 6 00 8 00

Number of OO Projects

Figure 8. Basic Level Construct.

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

450 I
e

jg ■:

400 m cP cf-. c.o 6 ° 203 3 50£ o c Cf*.MCo 3 00 * y o ~ »✓' eb ;
o - e *2 50 ■ o i
>0_l
U

200 -
eC'v£> c a

A 1 50 m „o
§ c

1 00 • M
‘V

050 m o

O'
c ,
S

§
A:;
'§

® P 3 CC

y

■ ■ ■ ■ ■ ■ ■ I0 00 2 00 4 00 6 00 8.00 10 00 12 00 14 00
Years of OO Experience

4 SO -

o
5 3 50 -
£
§ 3 00 -
O
"5 2 50 - >0
—i 2 00 -

o
A 150 - .Qo

1 oo -

%0

3a
C 134 00 - n

l - to
9

a
'J
0 g O
o
o
QO

0
1 i 1 1000 1 00 2.00 3 00

Number of OO Projects

Figure 9. Object Level Construct.

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

c c ®
_ 4 00 ■ „ ° G c
o ° o ° „ c.
S ,.%C O* 9 =
0 o .-> -E? - ■a rj

o 3 00 ■ ® O

"5 0.&•_
> '- 0 - 0 : ?
0 'w .-fj

C.°8'

■ ■ ■ ■
000 5.00 1000 i s ao

Years of OO Experience

M 4 00 •oa
S
§

O 3.00 m

5 2.00 a
« 0 0 "^ ' O Q<0 C O §

§ 0 3
1.00. 2 i

0 0 ~ -*• !*•
eX a C <D

0
0

d
jj

0 0 ' 8

0 3 c G

X
s

■ ■ « a ■
0.00 2.00 4.00 6 00 8.00

Number of OO Projects

Figure 10. System Level Construct.

i l l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

c(00)

6 00
5.50

5.00

4.50

4.00

3.50

3.00

2.50

2.00

150

1.00

50
.00

50 2.00 2.67 3 67 4.67 6.00 10.0000

class

subroutine

25 117 Z 2 S 3.17 4 17 5.50 fl.00 15.00

calculated years of oo exp

5.00

4 50

4.00 <

3.50 <

3 0 0

2.50

2 00

1 50

1.00

class

subroutine
.00 1 00 2.00 3.00 4.00 5.00 6.00 7 00 8.00 9.00

quantity of oo projects participated in

Figure 11. Comparison Of Class Concept Versus Subroutine Concept Using
Years Of OO Experience And Number Of OO Projects As The X-Axis.

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

data model

object model
00 50 2.00 2.67 3.67 4 67 6 00 10 00

25 1 17 2.25 3.17 4 17 5.50 8 00 15.00

years of oo experience

5.0

4 5

4 0

3.5

2.5

2.0 avgc
ss object model avg

.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00

quantity of oo projects participated in

5

4

3

2

1

0

Figure 12. Comparison Of Data Model And Object Model Concepts
Using Years Of OO Experience And Number Of OO Projects As The
X-Axis.

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

6

5

4

3

2

1

0
3.67 46700 50 2.67 600200 10.00

.25 1 17 2.25 3.17 4.17 5 50 8.00 15.00

calculated years of oo exp

5 0

2 5

20 < into avgcCO<D
S intp avg

2 0 0 3.00 4 00 5.00 6.00 7.00.00 1.00 9.008.00

quantity of oo projects participated in

Figure 13. Comparison Of Procedural And Object-Oriented
Interaction Concepts Using Years Of OO Experience And Number
Of OO Projects As The X-Axis.

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

5

layer avg

monolithic avg

25
50 2.00 1 6 7 3.67 4 67 6.00 10.00

1.17 2.25 3 1 7 4 17 5.50 8 00 15.00

calculated years of oo exp

4 5

4.0 « i

3.5

3.0

2.5

2 0

layer avg
cCO©5 monolithic avg

1.00 2.00 3.00 4.00 5.00 6.00 7 00 8.00 9.0000

quantity of oo projects participated in

Figure 14. Comparison Of the Layer And Monolithic Concepts Using
Years O f OO Experience And Number Of OO Projects As The X-Axis.

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

6

5

4

3

2

1

0
00 50 2.00 2.67 3.67 4 67 10006.00

functional decomp

25 1.17 2^5 3.17 4 17 5.50 8.00 1500

calculated years of oo exp

c<Q
4>

6

5

4

3

2

1

0
1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.0000

functional decomp

noun vert)

quantity of oo projects participated in

Figure 15. Comparison Of Functional Decomposition And Noun-
Verb Analysis Concepts Using Years Of OO Experience And
Number Of OO Projects As The X-Axis.

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

c<TJ<D

6

5

4

3

2

1

0
00 50 2.67 3.67 4 6 72.00 6.00 10.00

function

things as objects

25 1.17 2.25 3.17 4.17 5.50 8.00 15.00

years of oo exp

<U
4>

5

\
4

3

2

1

0
.00 1.00 2.00 3.00 4.00 5.00 6.00 7.00 8.00 9.00

function

things a s ofcjects

quantity of oo projects participated in

Figure 16. Comparison Of Function And Things As Objects Concepts
Using Years Of OO Experience And Number Of OO Projects As X-Axis.

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

5.0
4 8

4.5

4.3

4.0

3.8

3.5

3.3

3 0

2.8

2.5

2 3

2.0 function avg

things a s obj avg
2 5 01 50 2.17 3.00 3.33 4 0 01 00

1.17 2 0 0 2 2 5 2 6 7 3.17 3.67

calculated years of oo exp

500

4 0 0

300

2.00

1.00

things as obj avgeCO 0> 2 function avg

quantity of oo projects participated in

Figure 17 A. Comparison Of Function And Things As Objects Concepts
Using Years Of OO Experience And Number Of OO Projects As X-Axis.

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

5.0

4.8

4.5

4.3

4.0

3.8

3.5

3.3

3.0

function avg
2.8

converting things2.5
5.50 6.00 7.00 8.00 9.005.835.00

calculated years of oo exp

Figure 17B. Comparison Of Function And Converting Things Into
Objects Concepts Using Years Of OO Experience As The X-Axis.

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

5.0

4.5

4.0

3.5

3.0

2.5

2.0 abstraction

data modification
2.001.00 3.00 4.00 5.00 6.00 7.00

quantity of oo projects participated in

Figure 18. Comparison Of Abstraction And Data Modification
Concepts Using Number Of OO Projects As The X-Axis.

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

5.0'

4.5

4.0

3.5

3.0

2.5

2.0 interaction, oo

input-process-output
6.00 8.002.00 4.00.00

5.00 7.00 9.001.00 3.00

quantity of oo projects participated in

Figure 19. Comparison Of Interaction And Input-Process-Output
Concepts Using Number Of OO Projects As The X-Axis.

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

5.0

4.5

4.0

3.5

3.0

2.5

2.0 data model avg

object model avg
.00 2.00 4.00 6.00 8.00

1.00 3.00 5.00 7.00 9.00

quantity of oo projects participated in

Figure 20. Comparison Of Data Model And Object Model Concepts
Using Number Of OO Projects As The X-Axis.

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

o c500

450

ccBO C400

<r350

O ' CD

2-50

CD ODC O C> 2 0 0

Y SO

1 00

0 50

000

400 000 000

y o a rs o f o o oxporionco
to .00 12 00 14.00000 00

Figure 21. Multiple Plateau Location.

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

• 290

• 200

quantity of oo

Figure 22. Multiple Plateau Location,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

quantity of oo pro)«cts particJeatad in

Figure 23. Multiple Plateau Location.

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

0 75 - S C

0O omw
% 050 - '- C O G
U
? - ,.Q

0 25 - O C <

oc c c c

0 00 - C0DGD0G303B © C O C O C O C O ~C----------------3
I I I I

0 00 5 00 10 00 15.00

c a lc u la te d y e a r s o f o o e x p

1 oo - e

0.75 - C

55 0 . 5 0 - O C

o
« a c

0.25 ‘

0.00 - O O O C C O -O " G O - G O
I I I I I

0.00 2.50 5.00 7.50 10.00

quantity of oo projects participated in

Figure 24. Basic Level Construct For “Don’t Know” Analysis.

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

0.80 -

25 0 60 -

«
5 %
® 0 .4 0 - d S ,

■■33o £ -
JJ. 3c2. O^ ̂ w c o
o o0 20 - O . c- o

'C c
0.00 - O '.330 OO O C- I ------- 1“

5.00 10.00 15.00

calculated years of oo exp

quantity of oo projects participated in

Figure 25. Object Level Construct For “Don’t Know” Analysis.

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

^ 0.60 - o

§
ID
t t 0.40 • ̂ w
s ° o c i

| CB ® 3 *

« . „ *>> o^o - - X cr~" .̂ -
• o '•’ o a ■ cc c , o a c

„ 3 8 c c c ° c c
a' c q ®

o.oo- rooc c o o c c a c a — -tr -
i i---------------- 1---------------- 1-

000 5.00 10.00 1500

calculated years of oo exp

o

„ 0.60 -

!? 3 c a
| S S e c c
m a c
*5 o.4o - c 0
> a ;
® - p S c-

i ° a
« s ' c
5* 020 - ;3 c -V | ~

3 I 5 i s ob 8 ° \
0.00 - c c o a c c o a o ;

- 1------------1------------1------------ 1-------
0.00 2.50 5.00 7.50

quantity of oo projects participated in

Figure 26. System Level Construct For “Don’t Know” Analysis.

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Don’t Know
Analysis

is

I10
g*3(0

0.50 - O O C C C

Coinciding Plateaus

0.25 - C O C CD

sc :o'.

0 00 - a»CDOCSOOD)5<SDOOa2>
I

000
I

500
I

1000

calculated years of oo exp

i
1500

5.00 -

o
& „ o . q_

4.00 - C D C C “ C3„ O O bx o O o
<C ° ^o> o, be O. v-01 ° w

2 3 00 - ,10__ ? 3 ...5 a :c> „ c o .o .
* o ' "c <oo Q - .<?
^ ZOO - O C O „ . O i« p . _A C S ; O

, = % §

° oo
3ci
3 8 8 °

1.00 - G O

o :

O
c c c

Primary Analysis
(excluding don 't

knows)

0.00 - o
I

0.00
I

5.00
I

10.00

calculated years of oo exp

i
15.00

Figure 27. Comparison Of Basic Level Construct Plateaus.

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Table 1

Approaches to Skill Acquisition

Category Theory Definition Authors

ACT Theory Three stages of skill acquisition Anderson

Adaptive are the cognitive (declarative) (1982; 1987;

Control of stage, in which the learner 1993), Fitts

Production

Thought makes an initial approximation

of the skill; the associative

stage (knowledge compilation),

in which performance is

refined; and the autonomous

(procedural) stage in which

(1964)

Systems performance is well refined but

continues to improve slightly.

Larkin's Characterize the minimal Larkin

ABLE Model knowledge a learner might

acquire from a textbook and

then propose a means by which

practice might facilitate the

application of primitive

knowledge to solve problems.

(1981)

table continues

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Table 1

Approaches to Skill Acquisition

Category Theory Definition Authors

Production

Systems

Learning by

Doing

Focuses on the development of

strategies in problem solving.

Anzai and

Simon (1979)

Holland's

framework

Acknowledges that a degree of

parallel processing (conscious

and subcogntive) occurs. A

number of rules may fire

simultaneously but only some

will register.

Holland,

Holyoak,

Nisbett and

Thagard

(1986)

Hunt and

Lansman's

Production

Activation

Model

Does not separate declarative

and procedural information.

Productions can be triggered

either by spreading activation

between them or by matching

with information in working

memory.

Hunt and

Lansman

(1986)

Mental

Models

Mental

Models

An individual creates a model of

a situation and supposed

conclusion.

Johnson-Laird

(1989)

table continues

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Table 1

Approaches to Skill Acquisition

Category Theory Definition Authors

Frames Micro units of knowledge used

to represent a stereotyped

situation.

Minsky

(1975)

Prepositional

Based

Schema Cognitive processes

continually evaluate incoming

information and compare it to

existing knowledge structures.

Bartlett

(1932)

Scripts Individuals use stereotyped

sequences of events that take

place over time. Activated in

highly specific situations.

Abelson

(1976),

Schank and

Abelson

(1977)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Table 2

Phase I Demographics

Demographic Object-Oriented Procedural

Number of Participants 35 20

Age 39.09 36.89

Gender (% male) 96.4% 75.0%

Years in IT 14.26 11.28

Years with current organization 4.61 8.11

Years of procedural experience 10.16 13.22

Number of procedural projects

participated in

18.00 42.20

Years of object-oriented experience 5.76 0.88

Number of object-oriented projects

participated in

6.00 0.67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Table 3

Causal Statements

Statement Type Sentence

Object-Oriented

Explicit

“I’m putting behaviors on it because I have to do things to

make the use cases work.”

Object-Oriented

Implicit

“The first thing I think about- what are the things we need

to keep track of, and how do they interact.”

Procedural

Explicit

“From a requirements document, the first thing I think

about is the data and so we would get those data items out

and we would design a nice, clean, logical data model.”

Procedural

Implicit

“We used to think lets listen to the users talk and then lets

extract from that conversation what information items they

really need.”

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Table 4

Evoked Statements

Type Statement

Object-Oriented An object should be able to hide all of its private

information and all of its data from all other

objects.

Procedural You group the requirements document items

based on functions.

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Table 5

Expert Classification Scheme (Phase I. Object-Oriented)

Design

Characteristics

Design

Relationships

Execution

Characteristics

Execution

Interaction

Abstraction Collaboration Instantiation Interaction

Converting Things Inheritance

Message

Passing

Framework Polymorphism

Layer Aggregation

Relationship Class Hierarchy

Object

Characteristics

Analysis

Techniques

Application

Design

Attribute Noun/Verb Analysis Components

Encapsulation Object Model OO Development

Info Hiding Class

Method

"Things" As Objects

table continues

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Table 5

Expert Classification Scheme (Phase I, Procedural)

Design

Characteristics

Design

Relationships

Execution

Characteristics

Execution

Interaction

Functions Linear Structure Linear Program

Data

Modification

Linear Form Subroutine

Input-Process-

Output

Monolithic Interaction

Analysis Techniques Application Design

Data Model Linear Flow

Functional Decomposition

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Table 6

Phase II Demographics

Demographic Sample

Number of Participants 31

Age:

Under 21 0

21-30 7

31-40 9

41-50 7

51-60 7

Over 60 1

Gender (% male) 54.8%

Years with current organization 6.55

Years of procedural experience 12.71

Number of procedural projects participated in 69.29

Years of object-oriented experience 2.18

Number of object-oriented projects participated in 1.07

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Table 7

Phase III Demographics

Demographic Sample

Number of Participants 131

Age:

Under 21 0

21-30 6

31-40 57

41-50 42

51-60 25

Over 60 I

Gender (% male) 88.6%

Formal Education (highest level):

High school diploma 0

Some college, but no degree 5

Associates degree 9

Technical degree 6

Bachelors degree 48

Some graduate coursework, but no degree 32

Masters degree or MBA 11

Some doctoral work, but no degree 13

table continues

139

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Table 7

Phase III Demographics

Demographic Sample

PhD or equivalent 3

Other 2

Number of professional organizations belong:

0 116

1 10

2 4

3 1

Years of procedural experience 15.64

Number of procedural projects participated in 34.21

Years of object-oriented experience 3.70

Number of object-oriented projects participated in • 3.13

Number of programming languages used on the job:

0-2 11

3-4 60

5-6 37

7-9 20

10-15 3

table continues

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Table 7

Phase III Demographics

Demographic Sample

Learning methods (could check multiple items):

Attending conferences 69

College courses 93

Company training session 79

Internet research 41

Online courses 27

On-the-job training 111

Reading books/manuals 113

Reading technical journals/magazines 55

Seminars 37

Self-taught 117

Years with current organization 9.13

Industry:

Aerospace (2 organizations) 38

Agriculture 2

Consulting I

Education 4

table continues

141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Table 7

Phase III Demographics

Demographic Sample

Financial 11

Government 8

Manufacturing 26

Medical 4

Retail 3

Services 18

Software development 2

T elecommunications 12

Utilities 2

142

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Table 8

Learning Conceptual Scheme

Basic Level Object Level System Level Procedural

= .8949 = .9534 = .9252 = .9580

Converting Things Attribute Abstraction Data Model

Things As Objects Class Component

Data

Modification

Collaboration Framework

Functional

Decomposition

Encapsulation

Information

Hiding Function

Inheritance Interaction Interaction

Instantiation Layer

Input-Process-

Output

Method Message Passing Linear Flow

Noun Verb

Analysis Object Model Linear Form

OO Development Relationship Linear Program

Polymorphism Linear Structure

Monolithic

Subroutine

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Table 9

AT-Means Cluster Analysis

Cluster 1 Cluster 2 Cluster 3

N 21 48 62

Cluster Center - Basic Level 1.068 2.703 3.858

Cluster Center - Object Level 1.299 2.997 3.822

Cluster Center - System Level 1.370 2.130 3.827

Cluster Center - Procedural 4.433 3.473 2.635

Years OO Experience 1.746 2.771 5.086

Number of OO Projects .952 2.333 4.484

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Table 10

t-tests Comparing Clusters

Cluster Comparison Factor t df Sig (2-tailed)

Clusters 1 & 2

Basic 6.891 67 .000

Object 7.819 67 .000

System 4.789 67 .000

Procedural -7.501 67 .000

Clusters 2 & 3

Basic -7.342 108 .000

Object -6.207 108 .000

System -15.384 108 .000

Procedural 7.498 108 .000

Clusters 1 & 3

Basic -18.789 81 .000

Object -18.189 81 .000

System -23.151 81 .000

Procedural 12.982 81 .000

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Table 11

Cluster ANOVA

Cluster Error

F Sig.

Mean

Square df

Mean

Square df

Basic 65.040 2 .611 128 106.514 .000

Object 51.308 2 .483 128 106.174 .000

System 65.570 2 .293 128 224.100 .000

Procedural 28.283 2 .307 128 92.062 .000

146

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Table 12

Coefficient of Determination (r2)

Factor Regression Type Years of OO

Experience

Number of OO

Projects

Basic Level

Linear 6.1% 15.2%

Quadratic 6.9% 17.8%

Curvilinear 70.3% 68.3%

Object Level

Linear 28.6% 39.3%

Quadratic 41.4% 55.5%

Curvilinear 69.9% 69.4%

System Level

Linear 23.7% 37.4%

Quadratic 26.0% 39.8%

Curvilinear 79.4% 80.1%

All OO

Linear 22.8% 38.5%

Quadratic 27.8% 45.9%

Curvilinear 89.2% 89.8%

Procedural

Linear 15.9% 24.3%

Quadratic 22.3% 34.6%

Curvilinear 59.7% 59.5%

147

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Table 13

Standard Error (Se)

Factor Regression Type Years of OO

Experience

Number of OO

Projects

Basic Level

Linear 1.2248 1.1639

Quadratic 1.2243 1.1503

Curvilinear .6996 .7224

Object Level

Linear .9474 .8730

Quadratic .8610 .7508

Curvilinear .5152 .6301

System Level

Linear .9941 .9002

Quadratic .9825 .8863

Curvilinear .5251 .6249

All OO

Linear .8872 .7917

Quadratic .8616 .7453

Curvilinear .3367 .3274

Procedural

Linear .7812 .7411

Quadratic .7536 .6916

Curvilinear .5492 .5507

148

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Table 14

Comparison of Response Choices

Class

Response N

Years

of OO

exp

#oo

projects

Don’t

Know 9 0.278 0.222

1.00 7 2.310 1.286

1.67 1 1.000 1.000

2.00 7 1.524 1.286

2.50 3 0.417 1.667

2.67 I 2.000 1.000

3.00 11 2.212 1.727

3.33 19 4.290 3.368

3.67 4 4.793 4.750

4.00 26 3.914 2.962

4.33 21 4.437 4.381

4.50 2 5.250 6.500

4.67 15 6.300 4.533

5.00 5 5.300 4.600

Subroutine

Response N

Years

of

OO

exp

#oo

projects

1.00 22 5.136 4.136

1.50 5 4.700 5.400

2.00 26 5.356 4.692

2.50 15 3.333 3.333

3.00 15 3.500 2.400

3.50 11 2.849 2.545

4.00 14 3.250 2.070

4.50 19 1.527 0.842

5.00 4 0.228 0.750

149

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Table 15

Plateaus using Years of OO Experience

Concept # of Plateaus Coinciding Plateaus

Abstraction 2 A

Collaboration 2 A

Components 2 A

Converting Things into Objects 2 A

Information Hiding 2 A

Interaction - OO 2 A

Layer 2 A

Message Passing 2 A

Method 2 A

Noun-verb Analysis 2 A

Object Model 2 A

Things as Objects 2 A

Attribute I B

Class 1 B

Encapsulation 1 C

Instantiation I B

OO development 1 B

Relationship I C

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Table 16

Plateaus using Number of OO Projects

Concept # of Plateaus Coinciding Plateaus

Abstraction 2 A

Components 2 B

Converting Things into Objects 2 A

Inheritance 2 B

Interaction - OO 2 B

Layer 2 B

Message Passing 2 B

Noun-verb Analysis 2 C

OO development 2

Relationship 2 B

Encapsulation 1 D

Polymorphism I D

Things as Objects 1 C

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Table 17

Percentage of “Don’t Know” Responses

Construct Concept %

Object Collaboration 30.53%

Inheritance 21.37%

Method 22.14%

OO Development 21.37%

Polymorphism 24.81%

System Components 21.63%

Framework 49.24%

Layer 24.81%

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Table 18

Summary of Findings

Hypothesis Description Results

HI Basic Level Construct Multiple plateaus supported using

time on x-axis.

Object Level Construct Single plateaus on both time and

projects.

System Level Construct Multiple plateaus supported on

number of projects on x-axis.

H2 Basic Level Construct Supported for Functions/Things as

Objects

Object Level Construct Supported for Class/Subroutine,

Functional Decomposition/Noun-

Verb Analysis

System Level Construct Supported for Data Model/Object

Model, Interaction,

Monolithic/Layer

H3 Basic Level Construct Supported for Functions/Things as

Objects, Functions/Converting

Things into Objects

Object Level Construct Not supported

table continues

153

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Table 18

Summary of Findings

Hypothesis Description Results

H3 System Level Construct Supported for Abstraction/Data

Modification, Framework/Linear

Structure, Object-Oriented

Interaction/Input-Process-Output,

Layer/Data Modification, and

Object Model/Data Model

H4 Basic Level Construct Supported for Converting Things

into Objects

Object Level Construct Supported for Noun-Verb Analysis

System Level Construct Supported for Abstraction,

Components, Interaction, Layer

and Message Passing

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Table 19

Construct/Concept Plateaus

Construct Concept Multiple Plateaus

Y= Years, P=

Projects, B=Both

Single Plateaus

Y= Years, P=

Projects, B=Both

Basic Converting things

into objects

B

Things as objects Y P

Object Attribute Y

Class Y

Collaboration Y

Encapsulation B

Inheritance P

Instantiation Y

Method Y

Noun-verb analysis B

OO Development P Y

Polymorphism P

table continues

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Table 19

Construct/Concept Plateaus

Construct Concept Multiple Plateaus

Y= Years, P=

Projects, B=Both

Single Plateaus

Y= Years, P=

Projects, B=Both

System Abstraction B

Components B

Information hiding Y

Interaction B

Layer B

Message passing B

Object model Y

Relationship P Y

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

References

Abdolraohammadi, M. J., & Shanteau, J. (1992). Personal attributes of

expert auditors. Organizational Behavior and Human Decision Processes. 53, 158-

172.

Abelson, R.P. (1976). Script processing in attitude formation and decision

making. In J. S. Carroll, & J. W. Payne (Eds.), Cognition and Social Behavior.

Hillsdale, NJ: Lawrence Erlbaum Associates.

Adelson, B. (1981). Problem solving and the development of abstract

categories in programming languages. Memory and Cognition, 9. 422-433.

Adelson, B. (1984). When novices surpass experts: The difficulty of a task

may increase with expertise. Journal of Experimental Psychology: Learning,

Memory and Cognition, 10,483-495.

Aldenderfer, M. S., & Blashfield, R. K. (1984). Cluster Analysis. Newbury

Park, CA: Sage Publications.

Anderson, J. C., & Gerbing, D. W. (1991). Predicting the performance of

measures in a confirmatory factor analysis with a pretest assessment of their

substantive validities. Journal of Applied Psychology, 76, 732-740.

Anderson, J. R. (1982). Acquisition of cognitive skill. Psychological

Review, 89, 369-406.

Anderson, J. R. (1987). Methodologies for studying human knowledge.

Behavioral and Brain Sciences, 18,467- 505.

157

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Anderson, J. R. (1993). Rules of the Mind. Hillsdale, NJ: Erlbaum

Associates, Inc.

Anzai, Y., & Simon, H. A. (1979). The Theory of Learning by Doing,

Psychological Review, 86, 124-140.

Axelrod, R. (1976). Structure of decision: The Cognitive Maps of Political

Elites. Princeton, NJ: Princeton University Press.

Babbie, E. R. (1973). The Practice of Social Research. Belmont, CA:

Wadsworth Publishing Company, Inc.

Babbie, E. R. (1979). The Practice of Social Research.(2nd ed.). Belmont,

CA: Wadsworth Publishing Company, Inc.

Bagozzi, R. P., Yi, Y., & Phillips, L. W. (1991). Assessing construct

validity in organizational research. Administrative Science Quarterly. 36,421-458.

Baldwin, T. T., Magjuka, R. J., & Loher, B. T. (1991). The perils of

participation: Effects of choice of training on trainee motivation and learning.

Personnel Psychology, 44, 51-65.

Bartlett, F. C. (1932). Remembering: A Study in Experimental and Social

Psychology. Cambridge, England: University Press.

Billett, S. (1994). Situating learning in the workplace: Having another look

at apprenticeships. Industrial and Commercial Training. 26 .9-16.

Blashfield, R. K. (1980). The growth of cluster analysis: Tryon, Ward, and

Johnson. Multivariate Behavioral Research, 15, 439-458.

158

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Boland, R.J., Tenkasi, R.V., & Te’eni, D. (1994). Designing information

technology to support distributed cognition. Organization Science, 5, 456-475.

Bolton, R.N., Chapman, R.G. & Zych, J.M. (1990). Pretesting alternative

survey administration designs. Applied Marketing Research, 30, (Third Quarter

1990), 8-13.

Bougon, M., Weick, K., & Binkhorst, D. (1977). Cognition in organizations:

An analysis of the Utrecht jazz orchestra. Administrative Science Quarterly, 22,

606-639.

Briggs, G. E. (1954). Acquisition, extinction and recovery functions in

retroactive inhibition. Journal of Experimental Psychology. 47, 285-293.

Bruce, R. W. (1933). Conditions of transfer of training. Journal of

Experimental Psychology, 16, 343-361.

Bryan, W. L., & Harter, N. (1897). Studies in the physiology and

psychology of the telegraphic language. Psychological Review, 4 , 27-53.

Bryan, W. L., & Harter, N. (1899). Studies on the telegraphic language.

The acquisition of a hierarchy of habits. Psychological Review, 6, 345 - 375.

Campbell, R. L., Brown, N. R., & diBello, L. A. (1992). The programmer’s

burden: Developing expertise in programming. In R.R. Hoffman (Ed.) The

Psychology of Expertise: Cognitive Research and Empirical A.I. New York:

Springer-V erlag,

Cassidy, W. (1997). Good skilled help is hard to find, ITAA study says of IT

employees. TrafBcWorld, 3 ,41.

159

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Colley, A. M., & Beech, J. R. (1989). Acquiring and performing cognitive

skills. In A. M. Colley & J. R. Beech (Eds.) Acquisition and Performance of

Cognitive Skills, (pp. 1-16). Chichester, UK: John Wiley and Sons,.

Conrad, R., & Hull, A. J. (1968). The preferred layout for numerical data

entry sets. Ergonomics, 11, 165-173.

Conway, T., & Wilson, M. (1988). Psychological studies of knowledge

representation. In G. A. Ringland & D. A. Duce (Eds.) Approaches To Knowledge

Representation: An Introduction. Letchworth: Research Studies Press.

Cronbach, L. J., & Gleser,G. C. (1953). Assessing similarity between

profiles. Psychological Bulletin, 50, 456-473.

Culbert, S. (1996). Mind-Set Management. Oxford, UK: Oxford University

Press.

Cureton, E., & D’Agostino, R. (1983). Factor Analysis: An Applied

Approach. Hillsdale, NJ: Lawrence Erlbaum Associates.

Detienne, F. (1985). Programming expertise and program understanding.

Ninth Congress of the International Ergonomics Association, Bournemouth, UK.

1985.

Detienne, F. (1990). Difficulties in designing with an object-oriented

language: An empirical study. Human Computer Interaction. 5, 971-976.

Detienne, F. (1995). Design strategies and knowledge in object-oriented

programming: Effects of experience. Human Computer Interaction, 10. 129-169.

160

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Due, R. T. (1993). Object-oriented technology: The economics of a new

paradigm. Information Systems Management. 10, 59-73.

Dumas, J., & Parsons, P. (1995). Discovering the way programmers think

about new programming environments. Communications of the ACM. 38,45-57.

Eason, R. L., Smith, T. L, & Plaisance, E. (1989). Effects of proactive

interference on learning the tennis backhand stroke. Perceptual and Motor Skills,

68, 923-930.

Eaton, T. V., & Gatian, A. W. (1996). Organizational impacts of moving to

object-oriented technology. Journal of Systems Management. (March-April. 1996).

18-24.

Eden, C., Ackerman, F., & Cropper, S. (1992). The analysis of causal maps.

Journal of Management Studies. 29, 309-324.

Eden, C., Jones, S., Sims, D., & Smithin, T. (1981). The intersubjectivity of

issues and issues of intersubjectivity. Journal of Management Studies, 18, 37 - 47.

Ericcson, K. A., & Simon, H. A. 1980. Protocol Analysis: Verbal Reports as

Data. Cambridge, MA: MIT Press.

Everitt, B. (1980). Cluster Analysis. London: Halsted Press.

Fiol, C. M., & Huff, A. S. (1992). Maps for managers: where are we?

Where do we go from here? Journal of Management Studies. 29.267-285.

Fitts, P. M. (1964). Human Performance. Belmont, CA: Brooks/Cole.

161

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Ford, J. D., & Hegarty, W. H. (1984). Decision maker’s beliefs about the

causes and effects of structure: An exploratory study. Academy of Management

Journal, 27, 271-291.

Fossum, J. A., Arvey, R. D., Paradise, C. A., & Robins, N.E. (1986).

Modeling the skill obsolescence process: A psychological/Economic integration.

Academy of Management Review, 11, 362-374.

Fowler, F. (1993). Survey Research Methods. (2nd ed.) Thousand Oaks, CA:

Sage Publications, Inc.

Gagne, R. M., & Foster, H. (1949). Transfer of training from practice on

components in a motor skill. Journal o f Experimental Psychology, 39, 47-68.

Gerencher, K. (1999). How to say ‘farewell.’ InfoWorld, 21, 83-84.

Gibson, E. (1991). Flattening the learning curve: Educating object-oriented

developers. Journal of Object Oriented Programming, 3, 24-29.

Gibson, E. J. (1940). A systematic application of the concepts of

generalization and differentiation to verbal learning. Psychological Review, 47,

196-229.

Gist, M., Rosen, B., & Schwoerer, C. (1988). The influence of training

method and trainee age on the acquisition of computer skills. Personnel

Psychology, 41, 255-265.

Goodner, S. T. (2000). How to create a culture of retention. Human

Resource Professional. 13. 13-15.

Gordon, A. D. (1999). Classification. Boca Raton, FL: Chapman and Hall.

162

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Gordon, P.C. (1992). In H. H. Brownell & Y. Joanette (Eds.) Narrative

discourse in neurologically impaired and normal aging adults. San Diego, CA:

Singular Publishing Group.

Guadagnoli, E., & Velicer, W. F. (1988). Relation of sample size to the

stability of component patterns. Psychological Bulletin 103, 265-275.

Guttman, M. K., & Matthews, J. R. (1992). Managing a large project: Case

study of a long-term project at NCR. Object Magazine. 2, 50-55.

Harrel, E. C., & McLean, E. R. (1985, June). The effects of using a

nonprocedural computer language on programmer productivity. MIS Quarterly,

109-119.

Heberlein, T. A., & Baumgartner, R. (1978). Factors affecting response rates

to mailed surveys: A quantitative analysis of the published literature. American

Sociological Review. 43. 447-462.

Hendrick, H. W. (1983). Pilot performance under reversed control stick

conditions. Journal of Occupational Psychology. 56, 297-301.

Hilgard, E. R., & Bower, G. H. (1970). Applicability of Models and

Learning Theories. In W. S. Sahakian (Ed.) Psychology of Learning: Systems,

Models, and Theories (pp. 384-387). Chicago, IL: Markham Psychology Series.

Holland, J. H., Holyoak, K. J., Nisbett, R., & Thagard, P. R. (1989).

Induction: Processes of Inference, Learning, and Discovery. Cambridge: MIT

Press.

163

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Huck, S. W. (2000). Reading Statistics and Research. New York: Addison

Wesley Longman, Inc.

Huff, A. (1990). Mapping the process of problem reformulation:

Implications for understanding strategic thought. In A. Huff (Ed.) Mapping

Strategic Thought New York: John Wiley and Sons.

Hunt, E., & Lansman, M. (1986). Unified Model of Attention and Problem

Solving. Psychological Review. 93, 446-461.

Jobber, D., & Sanderson, S. (1983). The effects of prior letter and colored

survey paper on mail survey response rates. Journal of the Market Research

Society, 25. 339-349.

Johnson-Laird, P.N. (1989). Mental models. In M. I. Posner (Ed.)

Foundations of Cognitive Science (pp. 469-499). Cambridge, MA: MIT Press.

Kahney, J. H. (1983). Problem solving by novice programmers. In The

Psychology of Computer Use: A European Perspective. London: Academic Press.

Kaufman, L., & Rousseeuw, P. J. (1990). Finding Groups in Data: An

Introduction to Cluster Analysis. New York: Wiley.

Knoke, D., & Kuklinski. J. H. (1982). Network Analysis. Newbury Park,

CA: Sage Publications.

Kraiger, K., Ford, K. J., & Salas, E. (1993). Application of cognitive, skill

based and affective theories of learning outcomes to new methods of training

evaluation. Journal of Applied Psychology. 78, 311-328.

164

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Koubek, R. J., Salvendy, G., Dunsmore, H. E., & LeBold, W. K. (1989).

Cognitive issues in the process of software development: Review and reappraisal.

International Journal of Man-Machine Studies, 30, 171-191.

Larkin, J. H. (1981). Enriching formal knowledge: A model of learning to

solve textbook physics problems. In J. R. Anderson (Ed.), Cognitive skills and

their acquisition (pp. 311-334). Hillsdale, NJ: Erlbaum.

Lawley, D. N., & Maxwell, A. E. (1971). Factor analysis as a statistical

method. London: Butterworth and Co.

Lee, A., & Pennington, N. (1994). The effects of paradigm on cognitive

activities in design. International Journal on Human-Computer Studies. 40, 577-

601.

Leonard, D. (1995). Wellsprings of Knowledge. Cambridge, MA: Harvard

Business School Press.

Lewis-Beck, M. (1980). Applied Regression. An Introduction. Newbury

Park, CA: Sage Publications, Inc.

Lincoln, Y. S., & Guba, E. G. (1985). Naturalistic Inquiry. Newbury Park,

CA: SAGE Publications.

Liu, C., Goetze, S., & Glynn, B. (1992). What contributes to successful

object-oriented learning? In A. Papacke (Ed.), Conference on Object-Oriented

Programming Systems, Languages, and Applications (QOPSLA) 1992 (pp. 77-86).

Vancouver, BC: ACM Press.

165

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Lorr, M. (1983). Cluster Analysis for Social Scientists. San Francisco, CA:

Jossey-Bass Publishers.

Manns, M. L., & Nelson, H. J. (1996, November-December). Retraining

procedure-oriented developers: An issue of skill transfer. Journal o f Object-

Oriented Programming, 6-10.

Markus, M. L. (1990). Toward a "critical mass" theory of interactive media.

In J. Fulk & C. Steinfield (Eds.) Organizations and Communication Technology

(pp. 194-218). Newbury Park, CA: Sage Publications.

Mayer, R. E. (1983). Thinking, Problem Solving, Cognition. New York:

W.H. Freeman and Company.

McCray, P., & Blakemore, T. (1989). A guide to learning curve technology

to enhance performance prediction in vocational evaluation. Research Utilization

Report. Menomonie, WI: University of WI, Stout, Research and Training Center.

McGeoch, J. A. (1952). The Psychology of Human Learning. (2nd ed.) New

York: Longmans, Green..

McKeithen, K., Reitman, J., Rueter, H., & Hirtle, S. (1981). Knowledge

organization and skill differences in computer programmers. Cognitive

Psychology, 13, 307-325.

Melton, A. W., & Irwin, J. (1940). The influence of the degree of

interpolated learning on retroactive inhibition and the overt transfer of specific

responses. American Journal of Psychology, 53. 173-203.

166

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Mey, M. (1982). The cognitive paradigm: cognitive science, a newly

explored approach to the study of cognition applied in an analysis of science and

scientific knowledge. Boston: D. Reidel Publishing Co..

Minsky, M. (1975). A framework for representing knowledge. In P. H.

Winston (Ed.), The Psychology of Computer Vision. New York: McGraw-Hill.

Murphy, G. L., & Wright, J. C. (1984). Changes in the conceptual structure

with expertise: differences between real world experts and novices. Journal of

Experimental Psychology: Learning, Memory and Cognition. 10, 144-155.

Nachmias, D., & Nachmias, S. (1981). Research Methods in the Social

Sciences. New York: St. Martin's Press.

Narayanan, V. K., & Fayhey, L. (1990). Evolution of revealed causal maps

during decline: A case study of Admiral. In A. Huff (Ed.) Mapping Strategic

Thought (pp. 109-133). London: John Wiley and Sons.

Nelson, H. J., Armstrong, D., & Ghods, M. (in press). Teaching old dogs

new tricks. Communications of the ACM.

Nelson, H. J., Irwin, G., & Monarchi, D. E. (1997). Journeys up the

mountain: Different paths to learning object-oriented programming. Accounting,

Management and Information Technology, 7, 53-85.

Nelson, K. M., Nadkami, S., Narayanan, V. K., & Ghods, M. (200).

Understanding software operations support expertise: A causal mapping approach.

MIS Quarterly, 24 .475-507.

167

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Newell, A,. & Simon, H. A. (1958). Elements of a theory of human problem

solving. Psychological Review, 65, 115-166.

Newell, A., & Simon, H. A. (1972). Human problem solving. Englewood

Cliffs, NJ: Prentice Hall.

Nunnally, J. C. (1967). Psychometric Theory. New York: McGraw Hill.

Nunnally, J. C., & Bemstein, I. H. (1994). Psychometric Theory (3rd ed.).

New York: McGraw-Hill.

Ormerod, T. (1990). Human cognition and programming. In J. Hoc, T.

Green, R. Samurcay, & D. Gilmore (Eds.) Psychology of Programming (pp. 63-

82). London: Academic Press.

Osgood, C. E. (1949). The similarity paradox in human learning: A

resolution. Psychological Review, 56, 132-143.

Page-Jones, M. (1994). Education and training for real object-oriented shops.

Journal of Object-oriented Programming. 7, 51-53.

Payne, S. (1951). The Art of Asking Questions. Princeton, NJ: University

Press.

Pei, D., & Cutone, C. (1995). Object-oriented analysis and design.

Information Systems Management. 12, 54-60.

Pennington, N. (1987). Stimulus structures and mental representations in

expert comprehension of computer programs. Cognitive Psychology, 19, 295-341.

168

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Pennington, N., Lee, A., & Rehder, B. (1995). Cognitive activities and levels

of abstraction in procedural and object-oriented design. Human Computer

Interaction, 10, 171-226.

Pool, R. (1997). Beyond Engineering: How Society Shapes Technology. NY:

Oxford University Press.

Relmann, P., & Chi, M. T. (1989). Human expertise. In K. J. Gilhooly (Ed.)

Human and Machine Problem Solving (pp. 161-191). Hillsdale, NJ: Lawrence

Erlbaum Associates.

Rist, R. (1989). Schema creation in programming. Cognitive Science, 13,

389-414.

Rossi, P. H., Wright, J. D., & Anderson, A. B. (1983). Handbook of

Research Methods. Orlando, FL: Academic Press Inc.

Rosson, M., & Alpert, S. R. (1990). The cognitive consequences of object-

oriented design. Human Computer Interaction, 5, 345-379.

Rosson, M., & Carroll, J. (1990). Climbing the Smalltalk mountain. SIGCHI

Bulletin, 21,76-79.

Rosson, M., & Gold. (1989). Problem-solution mapping in object oriented

design. In Conference on Object-Oriented Programming Systems. Languages, and

Applications (OOPSLA) 1987 (pp. 7-10). New York: ACM Press.

Ryan, S. D. (1999). A model of the motivation for IT retraining.

Information Resources Management Journal. 12,24-32.

169

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Sahakian, W. S. (1970). Psychology of Learning: Systems. Models, and

Theories. Chicago: Markham Psychology Series.

Saltz, E. (1971). The Cognitive Bases of Human Learning. Homewood, IL:

The Dorsey Press.

Schank, R. C., & Abelson, R. P. (1977). Scripts, Plans. Goals and

Understanding: An Inquiry into Human Knowledge Structures. Hillsdale, NJ:

Lawrence Erlbaum Associates.

Schenk, K. D., Vitalari, N. P., & Davis, K. S. (1998). Differences between

novice and expert systems analysts: What do we know and what do we do? Journal

o f Management Information Systems. 15, 9-50.

Schmidt, R. A. (1988). Motor Control and Learning: A Behavioral

Emphasis. Champaign, IL: Human Kinetics.

Scholtz J., & Wiedenbeck, S. (1990). Learning second and subsequent

programming languages: A problem of transfer. International Journal of Human-

Computer Interaction. 2. 51-72.

Scholtz J., & Wiedenbeck, S. (1992). The use of unfamiliar programming

languages by experienced programmers. In A. Monk, D. Diaper, & M. Harrison

(Eds.) People and Computers VII. Cambridge, England: Cambridge University

Press.

Schuman, H., & Presser, S. (1981). Questions and Answers in Attitude

Surveys. New York: Academic Press.

170

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Shanteau, J. (1992). Competence in experts: The role of task characteristics.

Organizational Behavior and Human Decision Processes, 53,252-266.

Shanteau, J. (1987). Psychological characteristics of expert decision makers.

In J. L. Mumpower, O. Renn, L. D. Phillips, & V. R. Uppuluri (Eds.), Expert

Judgment and Expert Systems (pp. 289-304). Berlin: Springer-Verlag.

Shneiderman, B. (1976). Exploratory experiments in programmer behavior.

International Journal of Computer and Information Sciences, 5, 123-143.

Siegel, S. (1956). Nonparametric Statistics for the Behavioral Sciences.

New York: McGraw-Hill Book Company, Inc.

Siipola, E. M., & Israel, H. E. (1933). Habit-interference as dependent upon

stage of training. American Journal of Psychology, 45,205-227.

Simon, J. L., & Burstein, P. (1985). Basic Research Methods in Social

Science. New York: Random House.

Singley, M. K.., & Anderson, J. R. (1989). The Transfer of Cognitive Skill.

Cambridge: Harvard University Press.

Sokal, R., & Michener, C. (1958). A statistical method for evaluating

systematic relationships. University of Kansas Scientific Bulletin. 3 8 ,1409-1438.

Soloway, E., & Ehrlich, K. (1984). Empirical studies of programming

knowledge. IEEE Transactions on Software Engineering, 10, 595-609.

Spohrer, J.C., & Soloway, E. (1986). Novice mistakes: Are the folk

wisdoms correct? Communications of the ACM, 29,624-632.

171

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Steele, T. J., Schwendig, W. L., & Kilpatrick, J. A. (1992). Duplicate

responses to multiple survey mailings: A problem? Journal of Advertising

Research, 37, 26-34.

Stone, E. (1978). Research Methods in Organizational Behavior. Glenview:

Scott, Foresman and Co.

Sudman, S. (1976). Applied Sampling. New York: Academic Press, Inc.

Sudman, S., & Bradbum, N. M. (1982). Asking Questions. San Francisco:

Jossey-Bass Inc., Publishers.

Tarpy, R. M., & Mayer, R. E. (1978). Foundations of Learning and

Memory. Glenview, IL: Scott, Foresman and Company.

Thurstone, L. L. (1919). The learning curve equation. Psychological

Monographs, 26, 1-51.

Tomaskovic-Devey, D., Leiter, J., & Thompson, S. (1994). Organisational

survey non-response. Administrative Science Quarterly, 39. 439-457.

Travers, R. (1963). Essentials of Learning: An Overview for Students of

Education. New York: Macmillan Company.

Underwood, B. J. (1957). Interference and forgetting. Psychological

Review, 64. 49-60.

Vessey, I., & Conger, S. A. (1994). Requirements specification: Learning

object, process and data methodologies. Communications of the ACM. 3 7 .102 -

113.

172

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Villeneuve, A.O., & Fedorowicz, J. (1997). Understanding expertise in

information systems design, or, What’s all the fuss about objects? Decision Support

Systems, 21, 111-131.

Vitalari, N. P. (1985). Knowledge as a basis for expertise in systems

analysis: An empirical study. MIS Quarterly, 9, 221-240.

Ward, J. (1963). Hierarchical grouping to optimize an objective function.

Journal of the American Statistical Association, 58, 236-244.

Weiser, M., & Shertz, J. (1983). Programming problem representation in

novice and expert programmers. International Journal of Man Machine Studies.

19, 391-398.

Williams, W., Lance, G.N., Dale, M.B., & Clifford, H.T. (1971).

Controversy concerning the criteria for taxometric strategies. Computer Journal,

U , 162-165.

Wu, Q., & Anderson, J. R. (1991). Knowledge transfer among programming

languages. Proceedings of the 13th Conference of the Cognitive Science Society.

Lawrence Erlbaum Associates.

Yammarino, F. J., Skinner, S., & Childers, T. L. (1991). Understanding mail

survey response behavior. Public Opinion Quarterly, 55, 613-639.

Zmud, R. W., Anthony, W. P., & Stair, R. M. (1993). The use of mental

imagery to facilitate information identification in requirements analysis. Journal o f

Management Information Systems. 9. 175-191.

173

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Appendix A

Interview Guide

1. When a friend asks you “What is object-oriented (procedural) development?”

what do you tell him or her?

2. What are the main ideas that define object-oriented (procedural) development?

a. Explain each one.

3. What is the easiest concept to learn?

4. What is the most difficult concept to master?

5. How is that different from procedural (object-oriented) development?

6. Think of a time when you have been given a requirements document (for

example, say to develop an accounting system) and asked to produce an object-

oriented (procedural) solution. What was the first thing you did? How did you

proceed from there?

7. What problems do you think experienced procedural developers have as they

leam object-oriented development?

8. How could the transition from procedural to object-oriented development be

made easier?

9. How do you know if an object-oriented (procedural) developer is an expert?

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Appendix B

Glossary of Software Development Terms

Object Oriented Terms

> Abstract Class:

o A class with no instances that is created only for the purpose of

organizing a class hierarchy by defining methods and variables that

will apply to lower-level classes,

o Synonym: abstract data type; object type

> Abstraction:

o The act of removing certain distinctions between objects so that we can

see commonalties,

o Determining the essential characteristics of an object,

o Abstraction is one of the basic principles of object-oriented design,

which allows for creating user-defined data types, known as objects,

o Simplification of complex objects; we do this all the time naturally,

o Real Life Example: We think of a "Cat” as a single thing without

dwelling on the details of all the parts that go into making up a

"Cat".

o Software Example: A "database" is an abstract concept for a collection

of tables, columns, constraints, etc.

> Aggregation:

o Form a whole new object using other objects as the parts.

175

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

o Treat many objects as one object,

o Reduces complexity

o Describes a "has a" relationship

o The lifetime of the whole and its parts are independent of each other,

o Real Life Example: A garden exists independent of plants, but

independent plants could exist as part of the garden,

o Software Example: A "company" object exists independent from

"employee" objects.

> Architecture:

o The design of software that incorporates protocols and interfaces for

interacting with other programs and for future flexibility and

expandability,

o Synonym: Software architecture

> Association:

o A means to link object types (abstract classes) meaningfully,

o A relationship between different objects

o Can be navigable - one way or two ways,

o General and weak - no aggregation or ownership is implied,

o Real Life Example: A person rents and drives a vehicle. Neither owns

or is part of the other, and there is no inheritance,

o Software Example: Several products are part of a sale.

> Attribute:

176

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

o An identifiable association that an object has with some other object or

set of objects that is represented within an object type,

o For example the color of a car is an attribute of the car.

> Behavior:

o The processing that an object can perform, how the objects interact,

o The way objects are accessed or changed over time.

Class:

o A user-defined data type that defines a collection of objects that share

the same characteristics. An object, or class member, is one instance

of the class. Concrete classes are designed to be instantiated.

Abstract classes are designed to pass on characteristics through

inheritance.

o A template for defining the methods and variables for a particular type

of object.

o All objects of a given class are identical in form and behavior but

contain different data in their variables,

o classes are blueprints; objects are instances of blueprints,

o Classes should have well-defined responsibilities; responsibilities

should be balanced between classes, ie. there shouldn't be one

overall class that does all the work with other classes just looking on

and helping occasionally.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

o Real Life Example: A house blueprint would be a class. One or more

houses (objects) are instances of the blueprint,

o Software Example: A date class is the blueprint. Date objects would be

MemorialDay, MyBirthday, etc.

o Synonyms: object, noun, thing, abstract data type, user defined data type

Class Hierarchy:

o Classes are created in hierarchies.

o A tree structure representing the inheritance relationships among a set of

classes. A class hierarchy has a single top node and may have any

number of levels with any number of classes of each level,

o Hierarchy defines generalization/specialization or "Is A"

o used to simplify our view of the world.

o Real Life Example: A housecat IS A type of cat which IS A type of

animal.

o Software Example: A circle is a type of shape that is a type of drawing

object.

Collaboration

o Classes work together to solve problems.

o Identifying collaborations between them can assist in better design,

o Real Life Example: A facilities manager and a teacher collaborate to

schedule courses.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

o Software Example: A date class and a calendar class work together to

manage schedules.

> Collection class:

o A class that is designed to hold a variable number of references to other

objects.

o Synonym: array; vector.

> Component:

o One element of a larger system. Software components are routines or

modules within a larger system.

o Component software implies the use of small modules that allow

applications to be quickly customized. Rather than launch the huge

feature-rich applications in common use today, it is envisioned that

users will run smaller, tighter applications in the future, calling in

additional features (components) only when needed.

> Composition

o A "part of' relationship.

o The whole cannot exist without it's parts.

o Real Life Example: A human cannot exist without the heart, lungs,

brain, etc.

o Software Example: A "rectangle" object cannot exist without the

"points" that define it.

> CRC Cards

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

o OO design method that uses 3x5 cards.

o A card is made for each class containing responsibilities (knowledge

and services) and collaborators (interactions with other objects),

o Cards provide a way for a group to work on an OO design together.

> Design Patterns

o Design patterns are class design solutions for common and well-

understood problems,

o Real Life Example: Underwater diving - you need air, timers, known

descent and ascent rates, etc.

o Software Example: Using proxies and skeletons in order to facilitate

remote object communication.

> Encapsulation

o Making the data and processing within the object private, which allows

the internal implementation of the object to be modified without

requiring any change to the application that uses it.

o Data is packaged together with its corresponding procedures,

o The creation of self-sufficient modules that contain the data and the

processing.

o We want to encapsulate a collection of related methods and data into a

single cohesive object,

o Real Life Example: A computer monitor is fully encapsulated behind a

case. Everything it needs to work is inside it.

180

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

o Software Example: A date class encapsulates all the methods and data it

needs into a single unit.

o Synonym: information hiding, packaging.

Incremental and Iterative Development

o Instead of delivering 100% of all the functionality at the end, a portion

of the system is delivered over a smaller time period.

o In the first time increment you deliver 100% of 10% of the functions.

In the next increment you would deliver 100% of the next 20% of

the functions. Then 100% of the next 30%. So by the time you’ve

reached the third increment 60% of the functions have been

delivered at 100%.

Information Hiding:

o Technique of making the internal details of a module inaccessible to

other modules, protecting the module from outside interference, and

protecting other modules from relying on details that might change

over time.

o Keeping details of a routine private.

o Programmers only know what input is required and what outputs are

expected.

o The details are hidden in an object.

o We want to protect our objects from having their state modified without

their permission.

181

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

o Real Life Example: Nobody should be able to reach in and take your

heart without permission,

o Software Example: You shouldn't be able to set the month of a date to

15 by going straight into the internals o f a date class,

o Synonym: encapsulation; data hiding

> Inheritance:

o A mechanism whereby classes can make use of the methods and

variables defined in all classes above,

o The ability of one class of objects to inherit properties from a higher

class.

o Hierarchical structure

o Involves object relationships

o Synonym: delegation

> Instance

o When an instance is created, the initial values of its instance variables

are assigned

o A member of a class: for example, “Lassie” in an instance of the class

“dog.”.

o Synonym: member, object

> Instantiate

o To create an object of a specific class

> Interface:

182

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

o Any communication surface that determines the signals that can pass

through the surface.

o A message interface.

o Interfaces provide the ability to have modular components which can be

plugged-in and unplugged as desired without adversely affecting a

solution.

o Interfaces for a class should be complete, but should also be minimal.

o Real Life Example: Television sets have interfaces for power and video

input.

o Software Example: An edit control exposes an interface allowing it to

be plugged in or unplugged as desired.

> Layered Approach

o

o Synonym: layers of abstraction

> Library:

o A set of ready-made software routines (class definitions) that

programmers use to write OO programs.

> Loose coupling:

o Classes should be able to stand on their own as much as possible.

o Real Life Example: A computer and a monitor are connected only

through standard interfaces, not via internal wires.

183

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

o Software Example: A collection of shape objects can be drawn by a

drawing class, but the drawing class doesn't need to know the

internals of the shape objects.

> Message:

o A signal from one object to another that requests the receiving object to

carry out one of its methods,

o Consists of three parts: the name of the receiver, the method it is to

carry, and any parameters the method may require to fulfill its

charge,

o Synonym: request

> Method

o A procedure defined within a class,

o The processing that an object performs.

o When a message is sent to an object the method is implemented,

o Object methods embody the behavior of the system,

o Synonym: responsibilities

> Naturalness

o With OO a system can be designed as familiar business functions, and

the design can be carried all the way down to the programming

level. In traditional systems the programs are decomposed into

procedures that are more alien to the business model.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

o You model your application system using the same verbiage that they

use in their business process description,

o Models the way people understand reality

o OO development flexes and changes with the business process.

> Object

o A self-contained module of data and its associated processing,

o A software packet containing a collection of related methods and data,

o Independent programming modules

o Objects are the software building blocks of object technology,

o An instance of a class

o Synonym: class, noun, thing, entities, component

> Object-Oriented Technology

o Focus on the things

o A set of principles guiding software construction together with

languages, databases and other tools that support those principles,

o Languages: Smalltalk, Java, C++

> Object Model

o A description of an object architecture, including the details of the

object structure, interfaces between objects and other OO features

and functions,

o An object-oriented description of an application.

> Overriding

18S

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

o A special case of polymorphism in which the same name is given to a

method or variable at 2 or more levels on the same branch of a class

hierarchy.

o The name that is lowest in the hierarchy takes precedence, overriding

the more generic definitions further up the hierarchy.

> Parameter

o An object or a data element that is included in a message to provide the

requested method with information it needs to perform its task.

> Polymorphism

o The ability of a generalized request (message) to produce different

results based on the object that it is sent to.

o The ability to hide different implementations behind a common

interface, simplifying the communications among objects,

o Requires objects derived from a common base,

o Real Life Example: All vehicles on the road can be "told" to "go" by

turning a light green,

o Software Example: All derived classes of a "shape" can be told to draw

and each will in it's own way.

> Redundancy

o Have redundancy everywhere.

o Redundant data attributes all over the place because more concerned

with behavior and not data.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Reusability

o The ability to use all or the greater part of the same programming code

or system design in another application.

o If object is too small (granular, fine) then can’t reuse it.

Roles

o Classes should have specific roles in providing services.

o The more specific and well defined the role, the more useful and re

usable the class.

o The more roles there are, the more schizophrenic the class, and the less

re-usable.

o Real Life Example: A manager, receptionist, file clerk, developer, all

have different and distinct roles. It is easier to find others who can

"fill in" a position.

o Software Example: A UI component, Business Object and Data Object

all have different roles that are specific, and more reusable.

State

o Objects have state; complex objects may have more complex states;

understanding the valid class states makes for classes with fewer

failures.

o Real Life Example: A person can be awake or asleep, running, walking

or sitting.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

o Software Example: A robot welding arm controller can be moving, on

or off, in different positions.

> Strong Cohesion

o All the elements of a class are closely related.

o Real Life Example: A computer monitor contains only those parts that

work toward it's purpose. It doesn't contain a hard drive or sound

card.

o Software Example: A Date class should not contain methods for

computing sine and cosine.

> System Qualities

o Things a developer is trying to maximize in an application.

o Security, speed reliability, extensibility and flexibility

> Unified Modeling Language (UML)

o A single standard OO design language.

o Standard diagramming method.

o Graphical representation method.

> User Interface

o The combination of menus, screen design, keyboard commands,

command language and online help, which create the way a user,

interacts with a computer.

> Use Cases

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

o Breaking down requirements into user functions. Each use case is a

transaction or sequence of events performed by the user. Use cases

are studied to determine what objects are required to accomplish

them and how they interact with other objects,

o Synonym: use-case analysis

Traditional/Structured/Procedural Terms

> Business Logic

o The part of an application that performs the required data processing

of the business.

o It refers to the routines that perform the data entry, update, query

and processing behind the scenes.

o Synonym: Business rules

> Data flow diagram:

o description of the data and the manual and machine processing

performed on the date.

> Data model:

o A description of the organization of a database.

o Often created as an entity-relationship (ER) diagram. ER diagram

describes the attributes of entities and the relationships among them.

> Functional Decomposition:

o A technique for analyzing a set of requirements and designing a

program to meet those requirements.

189

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

o An overall goal for the program is broken down into a series of steps

to meet that goal.

o Each step is then decomposed into more elementary steps and so on.

o Each of the resulting components is programmed as a separate

module.

> GL Definitions

o 1 GL - machine languages

o 2GL - machine dependent assembly language

o 3GL - high level programming language

o 4GL - English-like language, commands that don’t require

traditional input-process output logic. They often have GUI’s

> 3GL (3rd generation language)

o high level programming languages Fortran, COBOL, C, Basic

> 4GL (4th generation language)

o more advanced than traditional high level languages

> Input/output (I/O):

o Transferring data between the CPU and a peripheral device,

o Every transfer is an output from one device and an input into

another.

> Library:

o A collection of programs or data files.

o A set of ready-made software routines (functions) for programmers.

190

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

> Logic:

o Sequence of operations performed by the software, sequence of

instructions in a program

o Synonym: algorithm

> Procedural programming

o requires programming discipline

o must have a proper order of actions in order to solve problem

o e.g. Fortran COBOL, Basic

o also called 3GL

o all the logic has to be explicitly programmed

o focus on the processes

o easy to read the code, can see the sequence of events

o Synonym: linear; structured programming

> Source code

o Programming statements and instructions that are written by a

programmer.

o What a programmer write but it is not directly executable by the

computer. It must be converted into machine language by

compilers, assemblers or interpreters,

o Synonym: lines of code

> Structured analysis

o includes data flow diagrams, data models,

191

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

o implementation independent graphical notation for documentation

> Structured design

o design guidelines and recipes

> Structured programming

o Techniques that impose a logical structure on the writing of a

program.

o A collection of techniques designed to increase the rigor of software

development and to improve the quality of development systems,

o . Large routines broken down into smaller ones

o Focused on the data items, data centered, data driven

o Standardized

o Goto is discouraged

o Use walkthroughs

o e.g. Pascal, Ada, dBase

> Top down programming:

o Imposes hierarchical structure on design of program

o Design starts at the highest level of an idea and works its way down

to the lowest level of detail

> User Requirements:

o The details and needs of the customer,

o Usually in document form.

192

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Appendix C

Scale Reliabilities

Concept Pilot Study

Reliability

Study

Reliability

Abstraction 0.7100 0.8298

Attribute 0.6795 0.6403

Class 0.6795 0.6375

Class Hierarchy 0.1081 Eliminated

Collaboration 0.8011 N/A1

Components 0.7363 0.6036

Control 0.4417 Eliminated

Converting “things” into objects 0.7980 0.7924

Data Model 0.7014 0.6743

Data Modification 0.8398 0.7074

Encapsulation 0.7898 0.7912

Framework 0.7391 0.7632

Functional Decomposition 0.8347 0.8240

Functions 0.8097 0.7436

Information Hiding 0.6866 0.8468

Inheritance 0.7470 0.8716

Input-Process-Output 0.7918 0.6428

table continues

193

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Appendix C

Scale Reliabilities

Concept Pilot Study

Reliability

Study

Reliability

Instantiation 0.7294 0.8386

Interaction (OO) 0.7559 0.8541

Interaction (Procedural) 0.7498 0.6610

Interface 0.4563 Eliminated

Layer 0.7804 0.6238

Linear Flow 0.7485 0.8172

Linear Form 0.7923 0.6795

Linear Program 0.6413 0.7018

Linear Structure 0.7021 0.8486

Message Passing 0.7107 0.8210

Method 0.7866 0.6642

Monolithic 0.8011 0.7221

Noun/Verb Analysis 0.8686 0.7636

Object 0.7208 0.27322

Object Model 0.7248 0.7712

OO Development 0.783 0.8039

Polymorphism 0.7533 0.7194

table continues

194

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Appendix C

Scale Reliabilities

Concept Pilot Study

Reliability

Study

Reliability

Procedural Programming 0.7595 Eliminated

Relationships 0.7363 0.7765

Structured Development 0.6616 Eliminated

Subroutine 0.7465 0.8026

Systems Development Life Cycle 0.7764 Eliminated

Things as objects 0.809 0.8799

1 Only one item used.

2 Variable was eliminated from study results.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Appendix C

Scale Reliabilities

Mindset Construct Pilot Study Reliability

Object-Oriented Application Design .7693

Object-Oriented Design Characteristics .6227

Object-Oriented Design Relationships .7250

Object-Oriented Execution Characteristics .6555

Object-Oriented Execution Interaction .7107

Object-Oriented OO Characteristics .8226

Object-Oriented Analysis Techniques .7472

Procedural Application Design .7485

Procedural Design Characteristics .7795

Procedural Design Relationships .7021

Procedural Execution Characteristics .6962

Procedural Execution Interaction .8055

Procedural Analysis Techniques .8217

table continues

196

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Appendix C

Scale Reliabilities

Mindset Construct Study Reliability

Object-Oriented Basic Level .8949

Object-Oriented Object Level .9534

Object-Oriented System Level .9252

Procedural .9580

table continues

197

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Appendix C

Scale Reliabilities

Mindset Meta-Construct Pilot Study Reliability

Object-Oriented Application .7693

Object-Oriented Design .7631

Object-Oriented Runtime .7135

Object-Oriented OO Characteristics .8226

Obj ect-Oriented Analysis .7472

Procedural Application Design .7485

Procedural Design .8365

Procedural Runtime .8528

Procedural Analysis .8217

Mindset Meta-Construct Study Reliability

Object-Oriented .9685

Procedural .9580

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Appendix D

Form Loading Screen

Loading form.
Please wait... This will take about 60 seconds.

If the survey does not load - check your browser version.

It must have java script capability
(e.g. Internet Explorer v4.0 or higher, Netscape v4.7 or higher)

199

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Appendix E

Survey Screen

SOFTWARE DEVELOPMENT SURVEY

The purpose of this study is to understand how people are approaching
software development (and significant maintenance enhancements). In
order to gather data that is a more accurate reflection of what actually
happens in organizations, we are interested in collecting data from
individuals out in the field. There are no right or wrong answers; we are
interested in gathering information about a variety of approaches to
software development.

Thank you for participating in this study. Your individual answers will
be kept completely confidential, and will be used only as part of a
summary of all responses gathered. Individual responses will not be
singled out at any time. An overall summary of the results will be
made available to you and your organization when statistical analyses
are completed. Filling out this survey indicates that you are at least 18
years of age and that you are giving your informed consent to participate
in this study.

Knowing your busy schedule, the survey has been designed to minimize
the effort required to respond. The survey should take approximately 20
minutes. Please be as complete as possible in responding to the
questions, as skipping questions or incomplete answers may invalidate
your responses.

SECTION I:

Think about your most recent software development experiences and how you

approach software development. Use that as your reference. Please indicate on

scale o f 1-5 the extent that your approach to software development agrees with

each statement.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Appendix E

Survey Screen

DK

Don’t Know,

no knowledge

or experience

in this area

 1. Object-oriented development is concerned with the nouns (things) and the

verbs (action) of business.

 2. A class specifies the behavior of its instances.

 3. Everything goes in one central location, or brain, and that logic runs the

system.

 4. You start finding some very high level objects, maybe discarding some,

and go down deeper from there.

201

1 2 3 4 5

Strongly Disagree Neither Agree Strongly

Disagree Disagree Agree

Nor Agree

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Appendix F

Thank You Screen

Thank you,

your response has been sent.

Please close your browser window now.

202

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Appendix G

Hierarchical Cluster Analysis Dendrogram Using Ward’s Method

C A S E 0
Label Num +

Case 74 74 —
Case 107 107 —
Case 70 70 —
Case 71 71 —
Case 19 19 —
Case 45 45 —
Case 33 33 —
Case 34 34 —
Case 90 90 —
Case 37 37 —
Case 39 39 —
Case 38 38
Case 88 88
Case 21 21 —
Case 30 30 —
Case 23 23 —
Case 118 118 —
Case 14 14 —
Case 22 22
Case 97 97
Case 28 28 —
Case 40 40 —
Case 61 61
Case 73 73 —
Case 48 48
Case 68 68 —
Case 81 81
Case 67 67 —
Case 91 91
Case 93 93
Case 94 94 —
Case 96 96

5 10

203

15 20 25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Case 115 115 —
Case 124 124 —
Case 126 126 —
Case 111 111 —
Case 129 129 —
Case 112 112 —
Case 55 55 —
Case 105 105 —
Case 54 54 —
Case 100 100 —
Case 57 57 —
Case 59 59
Case 20 20 —
Case 43 43 —
Case 32 32 —
Case 82 82 —
Case 99 99 —
Case 53 53 —
Case 62 62 —
Case 58 58 —
Case 29 29 —
Case 110 110 —
Case 51 51 —
Case 80 80 —
Case 65 65 —
Case 66 66 —
Case 13 13 —
Case 75 75 —
Case 69 69 —
Case 92 92 —
Case 95 95 —
Case 83 83 —
Case 89 89 —
Case 102 102 —
Case 120 120 —
Case 123 123 —
Case 87 87 —
Case 131 131 —
Case 56 56 —
Case 109 109 —

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Case 128
Case 52
Case 114
Case 60
Case 86
Case 125
Case 85
Case 106
Case 64
Case 104
Case 130
Case 76
Case 77
Case 63
Case 101
Case 119
Case 98
Case 127
Case 103
Case 116
Case 113
Case 121
Case 79
Case 26
Case 31
Case 9
Case 12
Case 27
Case 11
Case 17
Case 18
Case 10
Case 1
Case 25
Case 72
Case 84
Case SO
Case 7
Case 2
Case 8

128
52

114
60
86

125
85

106
64

104
130
76
77
63

101

119
98

127
103
116
113
121

79
26
31
9

12

27
11

17
18
10

1

25
72
84
50
7
2

8

205

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Case 24 24
Case 6 6 —
Case 5 5 —
Case 15 15
Case 3 3
Case 4 4
Case 16 16
Case 49 49 —
Case 117 117
Case 108 108 —
Case 122 122 —
Case 78 78 —

Case 46 46
Case 47 47 —

Case 41 41 —

Case 42 42 —
Case 36 36 —
Case 44 44 —
Case 35 35 --

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Appendix H

Cluster Analysis Agglomeration Schedule

Cluster Combined Coefficients Stage Cluster Next

First Appears Stage

Stage Cluster 1 Cluster 2 Cluster Cluster

1 2

1 76 77 .000 0 0 63

2 63 65 .000 0 0 30

3 58 59 .000 0 0 14

4 48 49 .000 0 0 89

5 37 38 .000 0 0 106

6 21 22 .000 0 0 50

7 6 7 .000 0 0 45

8 1 3 .000 0 0 77

9 10 31 1.557E-02 0 0 74

10 51 52 3.519E-02 0 0 35

11 98 99 5.883E-02 0 0 78

12 129 130 8.378E-02 0 0 28

13 112 115 .110 0 0 58

14 58 60 .140 3 0 103

15 120 121 .174 0 0 62

table continues

207

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Appendix J

Cluster Analysis Agglomeration Schedule

Cluster Combined Coefficients Stage Cluster Next

First Appears Stage

Stage Cluster 1 Cluster 2 Cluster Cluster

1 2

16 72 75 .208 0 0 67

17 43 50 .257 0 0 72

18 23 26 .312 0 0 54

19 13 16 .373 0 0 51

20 102 103 .433 0 0 83

21 15 17 .500 0 0 40

22 67 69 .570 0 0 86

23 95 96 .643 0 0 47

24 100 101 .718 0 0 83

25 81 92 .793 0 0 55

26 118 119 .869 0 0 62

27 2 20 .948 0 0 87

28 128 129 1.028 0 12 68

29 124 125 1.110 0 0 59

30 63 66 1.196 2 0 48

table continues

208

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Appendix J

Cluster Analysis Agglomeration Schedule

Cluster Combined Coefficients Stage Cluster Next

First Appears Stage

Stage Cluster 1 Cluster 2 Cluster Cluster

1 2

31 86 87 1.282 0 0 57

32 64 73 1.375 0 0 73

33 107 114 1.470 0 0 69

34 116 117 1.569 0 0 65

35 46 51 1.673 0 10 72

36 70 78 1.778 0 0 67

37 27 32 1.884 0 0 80

38 18 29 1.995 0 0 61

39 47 57 2.106 0 0 53

40 4 15 2.219 0 21 56

41 106 108 2.338 0 0 58

42 105 113 2.457 0 0 69

43 56 62 2.576 0 0 71

44 104 109 2.699 0 0 88

45 6 14 2.834 7 0 94

table continues

209

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Appendix J

Cluster Analysis Agglomeration Schedule

Cluster Combined Coefficients Stage Cluster Next

First Appears Stage

Stage Cluster 1 Cluster 2 Cluster Cluster

1 m

46 44 55 2.980 0 0 71

47 95 97 3.145 23 0 70

48 63 88 3.313 30 0 110

49 79 85 3.490 0 0 105

50 21 36 3.670 6 0 91

51 5 13 3.850 0 19 81

52 80 83 4.042 0 0 90

53 40 47 4.235 0 39 60

54 23 25 4.429 18 0 80

55 81 89 4.622 25 0 90

56 4 8 4.838 40 0 91

57 71 86 5.055 0 31 76

58 106 112 5.277 41 13 88

59 124 126 5.503 29 0 84

60 40 45 5.749 53 0 97

table continues

210

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Appendix J

Cluster Analysis Agglomeration Schedule

Cluster Combined Coefficients Stage Cluster Next

First Appears Stage

Stage Cluster 1 Cluster 2 Cluster Cluster

1 2

61 18 24 5.999 38 0 92

62 118 120 6.252 26 15 99

63 76 93 6.509 1 0 115

64 123 127 6.779 0 0 84

65 116 122 7.049 34 0 99

66 19 35 7.321 0 0 96

67 70 72 7.595 36 16 73

68 128 131 7.870 28 0 107

69 105 107 8.147 42 33 109

70 94 95 8.440 0 47 78

71 44 56 8.741 46 43 85

72 43 46 9.043 17 35 79

73 64 70 9.361 32 67 86

74 10 41 9.686 9 0 112

75 82 91 10.031 0 0 95

table continues

211

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Appendix J

Cluster Analysis Agglomeration Schedule

Cluster Combined Coefficients Stage Cluster Next

First Appears Stage

Stage Cluster 1 Cluster 2 Cluster Cluster

1 2

76 71 84 10.382 57 0 105

77 1 34 10.735 8 0 87

78 94 98 11.094 70 11 119

79 42 43 11.509 0 72 103

80 23 27 11.926 54 37 102

81 5 11 12.346 51 0 93

82 28 33 12.803 0 0 92

83 100 102 13.267 24 20 119

84 123 124 13.752 64 59 107

85 44 61 14.238 71 0 106

86 64 67 14.763 73 22 100

87 1 2 15.289 77 27 101

88 104 106 15.820 44 58 109

89 39 48 16.376 0 4 97

90 80 81 16.987 52 55 104

table continues

212

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Appendix J

Cluster Analysis Agglomeration Schedule

Cluster Combined Coefficients Stage Cluster Next

First Appears Stage

Stage Cluster 1 Cluster 2 Cluster Cluster

1 2

91 4 21 17.631 56 50 101

92 18 28 18.304 61 82 102

93 5 12 19.010 81 0 108

94 6 54 19.729 45 0 108

95 68 82 20.533 0 75 n o

96 19 30 21.340 66 0 114

97 39 40 22.259 89 60 116

98 9 53 23.220 0 0 113

99 116 118 24.193 65 62 123

100 64 74 25.185 86 0 117

101 1 4 26.257 87 91 112

102 18 23 27.336 92 80 114

103 42 58 28.439 79 14 116

104 80 90 29.626 90 0 115

105 71 79 30.842 76 49 117

table continues

213

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Appendix J

Cluster Analysis Agglomeration Schedule

Cluster Combined Coefficients Stage Cluster Next

First Appears Stage

Stage Cluster 1 Cluster 2 Cluster Cluster

1 2

106 37 44 32.186 5 85 12

107 123 128 33.614 84 68 12

108 5 6 35.051 93 94 11

109 104 105 36.503 88 69 11

n o 63 68 38.059 48 95 12

111 110 111 39.671 0 0 11

112 I 10 41.331 101 74 12

113 5 9 43.789 108 98 12

114 18 19 46.780 102 96 12

115 76 80 49.922 63 104 12

116 39 42 53.568 97 103 12

117 64 71 57.534 100 105 12

118 104 110 61.546 109 111 12

119 94 100 65.705 78 83 12

120 63 64 71.057 110 117 12

table continues

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

www.manaraa.com

Appendix J

Cluster Analysis Agglomeration Schedule

Cluster Combined Coefficients Stage Cluster Next

First Appears Stage

tage Cluster 1 Cluster 2 Cluster Cluster

1 2

121 37 39 76.803 106 116 127

122 1 5 82.566 112 113 125

123 104 116 92.204 118 99 128

124 63 76 104.631 120 115 126

125 I 18 123.398 122 114 127

126 63 94 148.351 124 119 129

127 1 37 184.084 125 121 129

128 104 123 227.383 123 107 130

129 1 63 313.476 127 126 130

130 1 104 650.000 129 128 0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

